- •Основы теории цифровых устройств и цифровые интегральные схемы
- •Содержание
- •1 Основы теории цифровых устройств…………………….…11
- •4 Цифровые интегральные микросхемы….…………….……63
- •22 Жидкокристаллические знакосинтезирующие
- •Сокращения и мнемонические обозначения
- •Предисловие
- •1 Основы теории цифровых устройств
- •1.1 Классификация
- •1.2 Система обозначений ис
- •1.3 Основные характеристики логических элементов
- •2 Арифметические оcновы цифровых устройств
- •2.1 Позиционная система счисления
- •Метод деления / умножения
- •Метод вычитания
- •2.3 Формы представления чисел в цифровых устройствах
- •Представление чисел с плавающей точкой
- •2.4 Двоичная арифметика
- •Сложение и вычитание двоично-десятичных чисел
- •2.5 Кодирование отрицательных чисел
- •2.6 Умножение и деление двоичных чисел
- •3 Логические основы цифровых устройств
- •3.2 Основные законы алгебры логики
- •3.3 Элементарные логические функции
- •3.4 Представление переключательных функций
- •3.5 Функционально полные системы переключательных
- •3.6 Минимизация переключательных функций
- •3.6.1 Минимизация логических функций методом Квайна
- •3.6.2 Минимизация логических функций с помощью карт Карно
- •4 Цифровые интегральные микросхемы
- •4.1 Базовый логический элемент ттл
- •4.2 Логические элементы или-не
- •4.3 Логические элементы с открытым коллектором и
- •4.4 Разветвление и объединение выходов и входов
- •4.5 Триггер Шмитта
- •4.6 Рекомендации по применению логических элементов ттл
- •5 Микросхемы ттл с транзисторами шоттки
- •5.1 Введение
- •5.2 Транзисторы с диодами Шоттки
- •5.3 Базовый логический элемент ис к533
- •5.4 Быстродействующие ттлш ис к530
- •5.5 Базовый логический элемент ис к1533
- •6 Цифровые микросхемы с кмоп-транзисторами
- •6.1 Общие сведения
- •6.2 Инвертор кмоп
- •А − упрощенная схема; б − полная схема с защитными и паразитными диодами
- •6.3 Буферный каскад
- •6.4 Основные характеристики инвертора
- •6.5 Тактируемый двунаправленный ключ
- •6.6 Логические элементы кмоп типа и-не, или-не
- •6.7 Разновидности простых лэ кмоп На основе базовых лэ спроектированы все микросхемы, входящие в состав серий кмоп: 561, к561, 564, 564в, к564, н564, кр1561, 1564.
- •6.8 Рекомендации по применению ис кмоп
- •7 Интегральные схемы эсл
- •7.1 Общие сведения
- •7.2 Базовый логический элемент ис к1500
- •7.3 Особенности применения эсл
- •8 Интегральные схемы на основе арсенида галия
- •8.1 Общие сведения
- •8.2 Базовый лэ сверхбыстродействующих ис к6500
- •8.3 Логические элементы, регистры, счетчики
- •9 Шифраторы
- •10 Дешифраторы
- •10.1 Линейные дешифраторы
- •10.2 Ступенчатые дешифраторы
- •Реализация функции
- •10.3 Дешифраторы-демультиплексоры ттл
- •11 Мультиплексоры
- •11.1 Назначение и принцип работы
- •11.2 Мультиплексоры ттл
- •11.3 Наращивание разрядности мультиплексоров
- •11.5 Синтез комбинационных схем на мультиплексорах
- •12 Арифметические устройства
- •12.1 Комбинационные двоичные сумматоры
- •13 Схемы сравнения цифровых кодов
- •13.1 Общие положения
- •13.2 Цифровые компараторы и их применение
- •Компаратора
- •14 Преобразователи кодов
- •14.2 Преобразователи кода для неполных матричных
- •15 Триггеры
- •15.1 Общие положения
- •15.2 Классификация триггеров
- •15.3 Триггерная ячейка r-s -типа
- •15.4 Асинхронные rs-триггеры на логических элементах и-не
- •15.5 Синхронные одноступенчатые триггеры
- •Микросхема к564 тм3
- •15.8 Счетные триггеры
- •Как самостоятельные изделия двухступенчатые синхронные триггеры не выпускаются, но они являются базой для построения счетных т-триггеров и универсальных jk - триггеров.
- •15.9 Универсальные jk-триггеры
- •А − jk − триггера; б − функциональное обозначение
- •16 Регистры
- •16.1 Параллельные регистры
- •16.2 Сдвигающие регистры
- •16.2.1 Последовательный регистр сдвига вправо
- •Регистра при сдвиге вправо
- •16.2.2 Реверсивный регистр
- •16.3 Кольцевые регистры-счетчики
- •16.3.1 Кольцевой регистр сдвига единицы
- •16.3.2 Кольцевой счетчик
- •17 Счетчики
- •17.1 Двоичные суммирующие счетчики с последовательным
- •17.3 Двоичные счетчики с параллельным переносом
- •17.4 Реверсивный двоичный счетчик
- •17.5 Десятичный счетчик
- •Счетчика
- •17.6 Типовые счетчики
- •17.6.2 Синхронные счетчики
- •17.6.3 Реверсивные счетчики
- •18 Программируемые делители
- •18.1 Программируемые делители с предварительной установкой
- •18.2 Программируемый делитель на к561ие15
- •19 Газоразрядные индикаторы
- •Напряжение зажигания, в…...............................170
- •20 Полупроводниковые индикаторы
- •20.1 Общие сведения
- •20.2 Управление единичными и шкальными индикаторами
- •А − ис155ид12; б − условное изображение
- •20.3 Одноразрядные знакосинтезирующие индикаторы
- •20.4 Полупроводниковые многоразрядные индикаторы
- •Индикаторов
- •20.4.1 Мультиплексная индикация
- •20.5 Матричные индикаторы
- •20.5.1 Управление матричными индикаторами Управление неполными матричными индикаторами
- •Управление матричными индикаторами
- •20.5.2 Блок формирования символов
- •21 Вакуумные люминцентные индикаторы
- •21.1 Введение
- •21.2 Одноразрядные вли
- •21.3 Многоразрядные индикаторы
- •Управление многоразрядными ивл
- •21.4 Шкальные индикаторы
- •21.5 Матричные индикаторы вли
- •22 Жидкокристаллические знакосинтезирующие индикаторы
- •22.1Общие сведения
- •22.2 Разновидности жки
- •Заключение
- •Библиографический список
- •Основы теории цифровых устройств и цифровые интегральные схемы
- •654007, Г. Новокузнецк, ул. Кирова, 42.
Метод деления / умножения
Правило перевода целых чисел. Для перевода целого числа Np, представленного в системе счисления с основанием P, в систему счисления с основанием q необходимо данное число делить на основание q (по правилам системы с основанием P) до получения целого остатка, меньшего q. Полученное частное снова необходимо разделить на основание q и т.д., пока последнее частное не станет меньше q. Число Nq в новой системе счисления представится в виде упорядоченной последовательности остатков в порядке, обратном их получению. Причем цифру старшего разряда дает последнее частное.
Пример 2.2.1 Перевести десятичное число 15710 в двоичный код, результат проверить.
число |
делитель остаток |
157 78 39 19 9 4 2 1 0 |
2_____________1 (младший разряд) 2_____________0 2_____________1 2_____________1 2_____________1 2_____________0 15710 = 100111012 2_____________0 2_____________1 (старший разряд) |
Проверка: 100111012 = 127 + 026 + 025 +124 + 123 + 122 + 021 + 120 = 128 + 16 + 8 + 4 +1 =15710.
Пример 2.2.2 Перевести десятичное число 15710 в восьмеричный код, результаты проверить.
число |
делитель остаток |
157 19 2 0
|
8_____________5 (младший разряд) 8_____________3 15710 = 2358 8_____________2 (старший разряд)
|
Проверка: 2358 = 282 + 381 + 580 = 128 + 24 + 5 = 15710.
Пример 2.2.3 Перевести десятичное число 15710 в шестнадцатеричный код, результат проверить.
число |
делитель остаток |
|
157 9 0 |
16_____13 (младший разряд) 16_____9 (старший разряд) 15710=9D16
|
|
Проверка: 9D16 = 9161 + 13160 = 144 + 13 = 15710.
Для облегчения работы с двоичными кодами желательно знать наизусть десятичные значения чисел 2n от n = 0 до n = 14. (Таблица 2.1)
Таблица 2.1
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
||||||
2 n |
1 |
2 |
4 |
8 |
16 |
32 |
64 |
128 |
||||||
8 |
9 |
10 |
11 |
12 |
13 |
14 |
||||||||
256 |
512 |
1024 |
2048 |
4096 |
8192 |
16384 |
||||||||
Правило перевода правильной дроби. Перевод правильной дроби Np, представленной в системе счисления с основанием р, в систему с основанием q заключается в последовательном умножении этой дроби на основание q (по правилам системы счисления с основанием р), причем перемножению подвергаются только дробные части. Дробь Nq в системе счисления с основанием q представится в виде упорядоченной последовательности целых частей произведений в порядке их получения, где цифра старшего разряда является первой цифрой первого произведения. Если требуемая точность перевода есть q–k, то число последовательных произведений равно k.
Пример 2.2.4 Перевести десятичную дробь 0,369710 в двоичную систему счисления с точностью до 2–7.
0,3697 0,7394 0,4788 0,9576 0,9152 0,8304 0,6608
2
2
2
2
2
2
2
1,3216 0,7394 1,4788 0,9576 1,9152 1,8304 1,6608
направление чтения
Искомое число в двоичном коде будет равно 0,369710 =
= 0,01011112
Произведем проверку перевода:
0,01011112 = 02–1 + 12–2 + 02–3 + 12–4 + 12–5 + 12–6 + 12 –7 =
= 0,3671875.
Пример 2.2.5 Перевести 0,369710 = в восьмеричный код с точностью q–3.
0,3697 0,9576 0,6608
8 8 8
2,9576 7,6608 5,2864
н
аправление
чтения
Восьмеричный код числа 0,369710 = 0,2758
Проверка перевода:
0,2758 = 28-1 + 78-2 + 58-3 = 0,36914062510.
Пример 2.2.6 Перевести число 0,369710 в шестнадцатеричный код с точностью q–2.
0,3697 0,9152
16 _ 16
5,9152 14,6432
направление
чтения
Шестнадцатеричный код числа 0,369710 = 0,5E16
Проверка перевода дает:
0,5E16 = 516–1 + 1416–2 = 0,367187510.
При переводе смешанных чисел необходимо отдельно перевести целую и дробную части, а полученные результаты объединить.
