
- •Основы теории цифровых устройств и цифровые интегральные схемы
- •Содержание
- •1 Основы теории цифровых устройств…………………….…11
- •4 Цифровые интегральные микросхемы….…………….……63
- •22 Жидкокристаллические знакосинтезирующие
- •Сокращения и мнемонические обозначения
- •Предисловие
- •1 Основы теории цифровых устройств
- •1.1 Классификация
- •1.2 Система обозначений ис
- •1.3 Основные характеристики логических элементов
- •2 Арифметические оcновы цифровых устройств
- •2.1 Позиционная система счисления
- •Метод деления / умножения
- •Метод вычитания
- •2.3 Формы представления чисел в цифровых устройствах
- •Представление чисел с плавающей точкой
- •2.4 Двоичная арифметика
- •Сложение и вычитание двоично-десятичных чисел
- •2.5 Кодирование отрицательных чисел
- •2.6 Умножение и деление двоичных чисел
- •3 Логические основы цифровых устройств
- •3.2 Основные законы алгебры логики
- •3.3 Элементарные логические функции
- •3.4 Представление переключательных функций
- •3.5 Функционально полные системы переключательных
- •3.6 Минимизация переключательных функций
- •3.6.1 Минимизация логических функций методом Квайна
- •3.6.2 Минимизация логических функций с помощью карт Карно
- •4 Цифровые интегральные микросхемы
- •4.1 Базовый логический элемент ттл
- •4.2 Логические элементы или-не
- •4.3 Логические элементы с открытым коллектором и
- •4.4 Разветвление и объединение выходов и входов
- •4.5 Триггер Шмитта
- •4.6 Рекомендации по применению логических элементов ттл
- •5 Микросхемы ттл с транзисторами шоттки
- •5.1 Введение
- •5.2 Транзисторы с диодами Шоттки
- •5.3 Базовый логический элемент ис к533
- •5.4 Быстродействующие ттлш ис к530
- •5.5 Базовый логический элемент ис к1533
- •6 Цифровые микросхемы с кмоп-транзисторами
- •6.1 Общие сведения
- •6.2 Инвертор кмоп
- •А − упрощенная схема; б − полная схема с защитными и паразитными диодами
- •6.3 Буферный каскад
- •6.4 Основные характеристики инвертора
- •6.5 Тактируемый двунаправленный ключ
- •6.6 Логические элементы кмоп типа и-не, или-не
- •6.7 Разновидности простых лэ кмоп На основе базовых лэ спроектированы все микросхемы, входящие в состав серий кмоп: 561, к561, 564, 564в, к564, н564, кр1561, 1564.
- •6.8 Рекомендации по применению ис кмоп
- •7 Интегральные схемы эсл
- •7.1 Общие сведения
- •7.2 Базовый логический элемент ис к1500
- •7.3 Особенности применения эсл
- •8 Интегральные схемы на основе арсенида галия
- •8.1 Общие сведения
- •8.2 Базовый лэ сверхбыстродействующих ис к6500
- •8.3 Логические элементы, регистры, счетчики
- •9 Шифраторы
- •10 Дешифраторы
- •10.1 Линейные дешифраторы
- •10.2 Ступенчатые дешифраторы
- •Реализация функции
- •10.3 Дешифраторы-демультиплексоры ттл
- •11 Мультиплексоры
- •11.1 Назначение и принцип работы
- •11.2 Мультиплексоры ттл
- •11.3 Наращивание разрядности мультиплексоров
- •11.5 Синтез комбинационных схем на мультиплексорах
- •12 Арифметические устройства
- •12.1 Комбинационные двоичные сумматоры
- •13 Схемы сравнения цифровых кодов
- •13.1 Общие положения
- •13.2 Цифровые компараторы и их применение
- •Компаратора
- •14 Преобразователи кодов
- •14.2 Преобразователи кода для неполных матричных
- •15 Триггеры
- •15.1 Общие положения
- •15.2 Классификация триггеров
- •15.3 Триггерная ячейка r-s -типа
- •15.4 Асинхронные rs-триггеры на логических элементах и-не
- •15.5 Синхронные одноступенчатые триггеры
- •Микросхема к564 тм3
- •15.8 Счетные триггеры
- •Как самостоятельные изделия двухступенчатые синхронные триггеры не выпускаются, но они являются базой для построения счетных т-триггеров и универсальных jk - триггеров.
- •15.9 Универсальные jk-триггеры
- •А − jk − триггера; б − функциональное обозначение
- •16 Регистры
- •16.1 Параллельные регистры
- •16.2 Сдвигающие регистры
- •16.2.1 Последовательный регистр сдвига вправо
- •Регистра при сдвиге вправо
- •16.2.2 Реверсивный регистр
- •16.3 Кольцевые регистры-счетчики
- •16.3.1 Кольцевой регистр сдвига единицы
- •16.3.2 Кольцевой счетчик
- •17 Счетчики
- •17.1 Двоичные суммирующие счетчики с последовательным
- •17.3 Двоичные счетчики с параллельным переносом
- •17.4 Реверсивный двоичный счетчик
- •17.5 Десятичный счетчик
- •Счетчика
- •17.6 Типовые счетчики
- •17.6.2 Синхронные счетчики
- •17.6.3 Реверсивные счетчики
- •18 Программируемые делители
- •18.1 Программируемые делители с предварительной установкой
- •18.2 Программируемый делитель на к561ие15
- •19 Газоразрядные индикаторы
- •Напряжение зажигания, в…...............................170
- •20 Полупроводниковые индикаторы
- •20.1 Общие сведения
- •20.2 Управление единичными и шкальными индикаторами
- •А − ис155ид12; б − условное изображение
- •20.3 Одноразрядные знакосинтезирующие индикаторы
- •20.4 Полупроводниковые многоразрядные индикаторы
- •Индикаторов
- •20.4.1 Мультиплексная индикация
- •20.5 Матричные индикаторы
- •20.5.1 Управление матричными индикаторами Управление неполными матричными индикаторами
- •Управление матричными индикаторами
- •20.5.2 Блок формирования символов
- •21 Вакуумные люминцентные индикаторы
- •21.1 Введение
- •21.2 Одноразрядные вли
- •21.3 Многоразрядные индикаторы
- •Управление многоразрядными ивл
- •21.4 Шкальные индикаторы
- •21.5 Матричные индикаторы вли
- •22 Жидкокристаллические знакосинтезирующие индикаторы
- •22.1Общие сведения
- •22.2 Разновидности жки
- •Заключение
- •Библиографический список
- •Основы теории цифровых устройств и цифровые интегральные схемы
- •654007, Г. Новокузнецк, ул. Кирова, 42.
2 Арифметические оcновы цифровых устройств
2.1 Позиционная система счисления
Под системой счисления понимают способ выражения и обозначения чисел. Общепринятым сейчас является позиционное счисление, в котором значение любой цифры определяется не только принятой конфигурацией ее символа, но и местоположением (позицией), которое она занимает в числе. Изображение чисел в любой позиционной системе счисления с натуральным основанием p(p ¹ 1) базируется на представлении их в виде произведения целочисленной степени основания p на полином от этого основания:
где Np – натуральное число в системе счисления с основанием p; ai Î 0, 1, 2, …, p – 1 − цифры p − ичной системы счисления; n – количество разрядов, используемых для представления чисел; pm – характеристика числа, m – показатель, m Î.., – 2, – 1, 0, 1, 2, …; pm p-i = pm-i – позиционный вес i-го разряда числа, определяемый местом соответствующего символа в изображении числа.
Количество цифр в позиционной системе счисления равно ее основанию. Основанием системы счисления pi называется количество знаков или символов, используемых для изображения числа в данной позиционной системе счисления. В настоящее время наиболее распространенными являются основания 10, 2, 16, которые иногда обозначаются индексами: D – Decimal, B – Binary, O – Octanary, H – Hexadecimal, соответственно.
Для представления чисел в десятичной системе используются цифры ai = (0, 1, …, 9), в двоичной – цифры ai = (0, 1), в шестнадцатеричной – цифры и буквы ai = (0, 1, …, 8, 9, A, B, C, D, E, F), где прописными латинскими буквами A,…, F обозначены цифры 10, 11, …, 15 десятичной системы. Цифры pi, необходимые для построения системы счисления, должны удовлетворять неравенству:
0 £ ai £ p – 1.
Если m = const, то это запись числа с фиксированной точкой (запятой). Позиция, в которой запятая фиксируется между разрядами числа, отделяет целую часть от дробной и определяет вес соответствующих разрядов. При m ³ n числа целые, при m £ 0 числа дробные и при 0 £ m £ n смешанные числа.
В качестве примера запишем десятичное число 8274 в виде целого, смешанного и дробного числа. При m = n = 4 полином этого числа запишется в следующем виде:
104 (8×10–1 + 2×10–2 +7×10–3 + 4×10– 4) = 8×103 + 2×102 + 7×101 +4×100.
Смешанное число запишем при m = 2 и n = 4:
102 ( 8×10–1 + 2×10–2 +7×10–3 + 4×10– 4 ) = 8×101 + 2×100 + 7×10 –1 +
+4×10–2= 82,74.
При m = 0, n = 4 получим дробное число
100 ( 8×10–1 + 2×10–2 +7×10–3 + 4×10– 4 ) = 8×10 –1 + 2×10–2 + 7×10–3 +
+4×10– 4 = 0,8274.
Позиционная система счисления весьма удобна для выполнения различных арифметических операций (сложение, вычитание, умножение, деление), поэтому она является основной в цифровой и вычислительной технике.
Поскольку в цифровой технике основными логическими элементами являются устройства с двумя устойчивыми состояниями, то основной системой счисления является двоичная. В двоичной системе счисления любое число может быть представлено последовательностью двоичных цифр:
-
N2 = am – 1 am – 2 … a1 a0 a – 1 a – 2 ,
где ai принимает значения 0 или 1.
Эта запись соответствует сумме степеней числа 2, взятых с указанными в них коэффициентами:
-
N2 = am-1×2 m –1 + am-2×2m– 2 + + a1×21 + a0×20 + +a–1×2– 1 + a-2×2–2
Например, двоичное число 10110, 1012 можно записать как
1×24 + 0×23 +1×22 +1×21 + 0×20 + 1×2–1 +0×2–2 + 1×2–3,
что соответствует десятичному числу 22,62510.
Для представления служебной информации при подготовке к решению задач на ЭВМ (например, номеров команд, адресов ячеек) применяют вспомогательные системы счисления – восьмеричную и шестнадцатеричную.
Шестнадцатеричная система счисления имеет основание
P = 16 и цифры ai = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Буквами A, B, C, D, E, F обозначены соответственно десятичные цифры 10, 11, 12, 13, 14, 15. С помощью формул разложения любое шестнадцатеричное число может быть представлено десятичным эквивалентом.
Пример 2.1.1 (1E, C)16 = 1×161 + 14×16 0 + 12×16– 1 = 30,7510.
Запись команд и адресов ячеек памяти в шестнадцатеричной системе счисления еще более короткая, чем в восьмеричной.
2.2 Перевод чисел из одной системы счисления в другую