- •Основы теории цифровых устройств и цифровые интегральные схемы
- •Содержание
- •1 Основы теории цифровых устройств…………………….…11
- •4 Цифровые интегральные микросхемы….…………….……63
- •22 Жидкокристаллические знакосинтезирующие
- •Сокращения и мнемонические обозначения
- •Предисловие
- •1 Основы теории цифровых устройств
- •1.1 Классификация
- •1.2 Система обозначений ис
- •1.3 Основные характеристики логических элементов
- •2 Арифметические оcновы цифровых устройств
- •2.1 Позиционная система счисления
- •Метод деления / умножения
- •Метод вычитания
- •2.3 Формы представления чисел в цифровых устройствах
- •Представление чисел с плавающей точкой
- •2.4 Двоичная арифметика
- •Сложение и вычитание двоично-десятичных чисел
- •2.5 Кодирование отрицательных чисел
- •2.6 Умножение и деление двоичных чисел
- •3 Логические основы цифровых устройств
- •3.2 Основные законы алгебры логики
- •3.3 Элементарные логические функции
- •3.4 Представление переключательных функций
- •3.5 Функционально полные системы переключательных
- •3.6 Минимизация переключательных функций
- •3.6.1 Минимизация логических функций методом Квайна
- •3.6.2 Минимизация логических функций с помощью карт Карно
- •4 Цифровые интегральные микросхемы
- •4.1 Базовый логический элемент ттл
- •4.2 Логические элементы или-не
- •4.3 Логические элементы с открытым коллектором и
- •4.4 Разветвление и объединение выходов и входов
- •4.5 Триггер Шмитта
- •4.6 Рекомендации по применению логических элементов ттл
- •5 Микросхемы ттл с транзисторами шоттки
- •5.1 Введение
- •5.2 Транзисторы с диодами Шоттки
- •5.3 Базовый логический элемент ис к533
- •5.4 Быстродействующие ттлш ис к530
- •5.5 Базовый логический элемент ис к1533
- •6 Цифровые микросхемы с кмоп-транзисторами
- •6.1 Общие сведения
- •6.2 Инвертор кмоп
- •А − упрощенная схема; б − полная схема с защитными и паразитными диодами
- •6.3 Буферный каскад
- •6.4 Основные характеристики инвертора
- •6.5 Тактируемый двунаправленный ключ
- •6.6 Логические элементы кмоп типа и-не, или-не
- •6.7 Разновидности простых лэ кмоп На основе базовых лэ спроектированы все микросхемы, входящие в состав серий кмоп: 561, к561, 564, 564в, к564, н564, кр1561, 1564.
- •6.8 Рекомендации по применению ис кмоп
- •7 Интегральные схемы эсл
- •7.1 Общие сведения
- •7.2 Базовый логический элемент ис к1500
- •7.3 Особенности применения эсл
- •8 Интегральные схемы на основе арсенида галия
- •8.1 Общие сведения
- •8.2 Базовый лэ сверхбыстродействующих ис к6500
- •8.3 Логические элементы, регистры, счетчики
- •9 Шифраторы
- •10 Дешифраторы
- •10.1 Линейные дешифраторы
- •10.2 Ступенчатые дешифраторы
- •Реализация функции
- •10.3 Дешифраторы-демультиплексоры ттл
- •11 Мультиплексоры
- •11.1 Назначение и принцип работы
- •11.2 Мультиплексоры ттл
- •11.3 Наращивание разрядности мультиплексоров
- •11.5 Синтез комбинационных схем на мультиплексорах
- •12 Арифметические устройства
- •12.1 Комбинационные двоичные сумматоры
- •13 Схемы сравнения цифровых кодов
- •13.1 Общие положения
- •13.2 Цифровые компараторы и их применение
- •Компаратора
- •14 Преобразователи кодов
- •14.2 Преобразователи кода для неполных матричных
- •15 Триггеры
- •15.1 Общие положения
- •15.2 Классификация триггеров
- •15.3 Триггерная ячейка r-s -типа
- •15.4 Асинхронные rs-триггеры на логических элементах и-не
- •15.5 Синхронные одноступенчатые триггеры
- •Микросхема к564 тм3
- •15.8 Счетные триггеры
- •Как самостоятельные изделия двухступенчатые синхронные триггеры не выпускаются, но они являются базой для построения счетных т-триггеров и универсальных jk - триггеров.
- •15.9 Универсальные jk-триггеры
- •А − jk − триггера; б − функциональное обозначение
- •16 Регистры
- •16.1 Параллельные регистры
- •16.2 Сдвигающие регистры
- •16.2.1 Последовательный регистр сдвига вправо
- •Регистра при сдвиге вправо
- •16.2.2 Реверсивный регистр
- •16.3 Кольцевые регистры-счетчики
- •16.3.1 Кольцевой регистр сдвига единицы
- •16.3.2 Кольцевой счетчик
- •17 Счетчики
- •17.1 Двоичные суммирующие счетчики с последовательным
- •17.3 Двоичные счетчики с параллельным переносом
- •17.4 Реверсивный двоичный счетчик
- •17.5 Десятичный счетчик
- •Счетчика
- •17.6 Типовые счетчики
- •17.6.2 Синхронные счетчики
- •17.6.3 Реверсивные счетчики
- •18 Программируемые делители
- •18.1 Программируемые делители с предварительной установкой
- •18.2 Программируемый делитель на к561ие15
- •19 Газоразрядные индикаторы
- •Напряжение зажигания, в…...............................170
- •20 Полупроводниковые индикаторы
- •20.1 Общие сведения
- •20.2 Управление единичными и шкальными индикаторами
- •А − ис155ид12; б − условное изображение
- •20.3 Одноразрядные знакосинтезирующие индикаторы
- •20.4 Полупроводниковые многоразрядные индикаторы
- •Индикаторов
- •20.4.1 Мультиплексная индикация
- •20.5 Матричные индикаторы
- •20.5.1 Управление матричными индикаторами Управление неполными матричными индикаторами
- •Управление матричными индикаторами
- •20.5.2 Блок формирования символов
- •21 Вакуумные люминцентные индикаторы
- •21.1 Введение
- •21.2 Одноразрядные вли
- •21.3 Многоразрядные индикаторы
- •Управление многоразрядными ивл
- •21.4 Шкальные индикаторы
- •21.5 Матричные индикаторы вли
- •22 Жидкокристаллические знакосинтезирующие индикаторы
- •22.1Общие сведения
- •22.2 Разновидности жки
- •Заключение
- •Библиографический список
- •Основы теории цифровых устройств и цифровые интегральные схемы
- •654007, Г. Новокузнецк, ул. Кирова, 42.
3.6 Минимизация переключательных функций
Минимизация – процесс приведения булевых функций к такому виду, который допускает наиболее простую, с наименьшим числом элементов, физическую реализацию функции. Частная задача минимизации булевой функции сводится к такому представлению заданной функции, которое содержит наименьшее возможное число букв и наименьшее возможное число операций над ними, так как каждой элементарной логической функции соответствует определенный физический элемент.
Оценить различные представления одной и той же булевой функции, например ДНФ, можно по количеству входов логических элементов, реализующих заданную функцию. Такую оценку реализации булевой функции называют ценой реализации функции по Квайну (Мак-Класки) или ценой покрытия булевой функции системой логических элементов. Для минимизации переключательных функций применяют различные методы: последовательного исключения переменных с помощью законов алгебры логики, методом Квайна, карт Карно (Вейча) и др.
Метод последовательного исключения переменных с помощью законов и тождеств алгебры логики является наиболее простым методом минимизации. Любое упрощение переключательной функции происходит при вынесении за скобки общих множителей из минтермов, суммирование которых приводит к исключению отдельных переменных. Процесс подбора пары минтермов, сопровождающийся понижением ранга переменной, называется склеиванием минтермов.
В
качестве примера рассмотрим минимизацию
переключательной функции yСДНФ
=
методом последовательного исключения
переменных. Сгруппируем первый и второй
минтерм, второй и третий:
Y=
.
Учитывая,
что
,
получим сокращенную нормальную форму:
.
Конъюнкции
,
входящие в такую сокращенную нормальную
форму, называются импликантами.
Под простой импликантой булевой функции f (x1, x2…xn) понимается всякое элементарное произведение P = x1·x2…xn, где k < n, которое является импликантой функции f и никакая собственная часть этого произведения в функцию f не входит, т.е. простые импликанты – элементарные конъюнкции наименьшего ранга, входящие в данную булеву функцию.
Сокращенной дизъюнктивной нормальной формой булевой функции называется такая функция, которая равна дизъюнкции всех своих простых импликант. Несмотря на то, что сокращенная ДНФ булевой функции содержит меньшее число букв, чем СДНФ этой функции, она в большинстве случаев допускает упрощение за счет поглощения некоторых простых импликант дизъюнкцией других простых импликант. В случае, если в дизъюнкции простых импликант, представляющих заданную функцию, ни одну из импликант исключить нельзя, то такую дизъюнкцию называют тупиковой дизъюнктивной нормальной формой. Выявление групп минтермов, отличающихся между собой комбинациями одних и тех же переменных, при большом числе переменных является задачей довольно сложной. Кроме того, некоторые минтермы могут входить одновременно в несколько групп и, следовательно, задача образования групп не может быть решена однозначно. Группируя минтермы различными способами, можно получить различные упрощенные формы заданной функции. Возможно, что получена одна из тупиковых форм, но нельзя быть уверенным, что она является минимальной.
