
- •Классификация биологических наук
- •Основные методы биологических исследований
- •Глава 1 общая характеристика жизни
- •Основные признаки и критерии живого
- •Уровни организации живого
- •Жизнь как особое природное и космическое явление
- •1.4. Поля биологических объектов
- •1.5. Биосоциальная природа человека
- •Глава 2 разнообразие существующих форм жизни. Неклеточные формы как возбудители инфекционных болезней
- •2.1. Неклеточные формы жизни (вирусы)
- •Неканонические вирусы (субвирусные агенты).
- •2.2. Прионы
- •2.3 Клеточные формы жизни Клеточная теория и ее значение для медицины
- •Основные положения клеточной теории т. Шванна:
- •Основые положения современной клеточной теории:
- •Значение клеточной теории для медицыны
- •Глава 3
- •3.2. Основные структурные компоненты эукариотической клетки
- •Цитоплазма ц итоплазма – обязательная часть клетки, заключенная между плазматической мембранной и ядром. Представлена гиалоплазмой с находящимися в ней органоидами и включениями
- •Включения
- •Органоиды цитоплазмы
- •Краткая характеристика органоидов
- •Глава 4 химическая организация клетки
- •4.1. Основные химические элементы клетки и их значение для жизнедеятельности организмов
- •4.2. Химические вещества клетки
- •4.2.1. Неорганические соединения: вода и минеральные соли вода, ее роль в клетке и организме
- •Биологическая роль н2о
- •Минеральные соли
- •Органические соединения
- •Углеводы
- •Функции углеводов:
- •Пластическая (строительная):
- •Функции жиров:
- •Строение и функции белков
- •Глава 5 обмен веществ (метаболизм) и энергии в клетке клеточные мембраны, их строение и функции
- •5.1. Клетка как открытая система. Ассимиляция и диссимиляция
- •5.2. Поток энергии в клетке
- •5.3. Этапы энергетического обмена (аэробного дыхания)
- •Суммарное уравнение кислородного этапа
- •1440 (40·36) Аккумулируется в атф
- •1160 КДж выделяются в виде тепла
- •5.4. Клеточные мембраны, их строение и функции
- •Плазматическая мембрана, или плазмалемма.
- •Свойства и функции плазмалеммы
- •Глава 6 ядро. Морфология хромосом. Кариотип человека
- •6.1. Строение и функции ядра
- •Ядерно - цитоплазматическое взаимодействие
- •Структура интерфазного ядра
- •Хромосомы
- •Денверская классификация хромосом человека
- •Глава 7 характеристика нуклеиновых кислот
- •Дезоксирибонуклеиновая кислота (днк)
- •Видовая специфичность днк
- •Структурные уровни днк
- •Основными свойствами днк являются её способности к репликации и репарации Репликация днк
- •Репарация днк
- •Рибонуклеиновые кислоты
- •Аденозинтрифосфорная кислота (атф)
- •Глава 8 строение, свойства и функции генов.
- •8.1. Ген как дискретная единица наследственности
- •8.2. Ген как единица генетической информации. Генетический код.
- •Свойства генетического кода:
- •Универсальность генетического кода свидетельствует о единстве происхождения всех живых организмов
- •Структурно - функциональная организация гена Молекулярная биология гена
- •Структура генов прокариот
- •Структура генов эукариот
- •Структура генов вирусов
- •Функционально – генетическая классификация генов
- •Современное состояние теории гена
- •Глава 9 поток генетической информации в клетке регуляция экспрессии генов
- •9.1. Центральная догма (основной постулат) молекулярной биологии
- •9.2 Основные этапы экспрессии генов (реализации генетической информации)
- •Транскрипция
- •9.2.3. Процессинг как промежуточный этап экспрессии гена у эукариот
- •9.3 Трансляция
- •9.5. Регуляция экспрессии генов
- •9.5.1. Регуляция экспрессии генов у прокариот
- •9.6. Регуляция экспрессии генов у эукариот
- •9.6.1. Контроль на уровне транскрипции
- •9.7. Механизмы регуляции гомеостаза клетки
- •Глава 10 жизненный цикл и деление клетки
- •10.1. Закономерности существования клетки во времени. Клеточный цикл.
- •10.2 Изменение клетки в митотическом цикле
- •10.2.3 Нарушение митоза. Эндомитоз. Политения
- •10.3 Жизнь клетки вне организма. Клонирование клеток
- •10.4 Амитоз как нетипичный способ деления клетки
- •10.5 Мейоз. Сходство и различия между митозом и мейозом
- •10.5.1 Особенности первого (редукционного) мейотического деления
- •10.5.2 . Особенности второго (эквационного) мейотического деления
- •10.5.3. Сходство и различие между митозом и мейозом
- •Содержание
10.2.3 Нарушение митоза. Эндомитоз. Политения
Различные внешние и внутренние факторы (радиация, вирусы, алкоголь, наркотики, нервные стрессы, некоторые лекарства) могут вызывать нарушения в течении митоза, что ведёт к появлению несбалансированных наборов хромосом и разным патологиям клеток. С патологическими митозами связано возникновение многих болезней человека, особенно если они возникают на ранних стадиях эмбрионального развития. Считают, что нарушения митоза - одна с причин злокачественного перерождения клеток.
На основе митоза возникли механизмы, с помощью которых в том или ином органе количество наследственного материала может быть увеличено при сохранении постоянства числа хромосом. Примером таких механизмов может быть эндомитоз и политения.
Эндомитоз. При эндомитозе после удвоения ДНК и репродукции хромосом, деление ядра и цитоплазмы не происходит. Иными словами, эндомитоз – это процесс воспроизведения хромосом без формирования веретена деления клетки при сохранении ядерной оболочки.
Эндомитоз приводит к кратному увеличению числа хромосом по сравнению с диплоидным, т.е. сопровождается полиплоидией. Эндомитоз чаще всего встречается в клетках тканей, которые интенсивно функционируют (например, клетках печени, мышечных волокнах).
Политения заключается в кратном увеличении содержания ДНК в хромосомах при сохранении их диплоидного количества. Хромосомы приобретают большие размеры. Клетки с политенными хромосомами имеют увеличенное количество наследственного материала, что повышают их функциональные возможности. Это явление наблюдается в клетках двукрылых насекомых, инфузорий, зародышевых мешков некоторых растений.
10.3 Жизнь клетки вне организма. Клонирование клеток
Соматические клетки эукариот, в том числе и человека, могут расти и размножатся в лабораторных условиях (in vitro) на специальных питательных средах, т.е. существовать в виде так называемых клеточных культур.
Благодаря быстрому размножению клеток на питательных средах можно в течении короткого времени получать их в необходимом количестве для цитогенетических, биохимических, иммунологических исследований.
В условиях in vitro изолированные эукариотические клетки чаще всего проходят ограниченное количество делений, а затем гибнут. Исключение составляют раковые клетки, которые способны расти неограниченно долго. Способность этих клеток к длительному размножению в культуре, несомненно, связана с неограниченной пролиферативной способностью раковых клеток в живом организме.
Размножение клеток в культуре происходит по механизму митоза и приводит к образованию клеточных клонов.
Клеточный клон – совокупность генетически однородных клеток (чистая линия клеток), являющихся потомками одной родоначальной клетки.
Клонирование клеток – получение чистой линии клеток в лабораторных условиях, даёт возможность проводить в генетически идентичных клетках биохимический анализ наследственно обусловленных процессов.
Хромосомный набор длительно поддерживающихся культур клеток отличается от набора нормальных клеток. При культивировании часто происходят потери хромосом, некоторые сегменты хромосом могут делитироваться, дуплицироваться или перемещаться. Возникающие аномалии можно использовать для картирования генов и других генетических исследований.
Наиболее значительные успехи в генетических исследованиях человека связаны с гибридизацией соматических клеток.
Гибридизация соматических клеток основана на слиянии совместно культивируемых клеток разных типов, в результате чего образуются гибридные клетки, содержащие функциональные хромосомы обоих родительских видов. Гибридизация возможна между соматическими клетками разных людей, а так же между клетками человека и животных (например, мыши, крысы, обезьяны, морской свинки).
Гибридные клетки при размножении обычно « теряют» определённые хромосомы. Например, в гибридных клетках «человек- мышь» при их делении постепенно утрачиваются все хромосомы человека, а в клетках «человек - крыса» - все кроме одной, хромосомы крысы.
Гибридизация соматических клеток in vitro в сочетании с биохимическими и молекулярно-генетическими исследованиями открывает новые подходы и перспективы в изучении локализации генов в хромосомах, механизмов первичного действия и взаимодействия генов, клеточной дифференцировки и изменчивости.
Методы генетики соматических клеток, основанных на размножении этих клеток в искусственных условиях, позволяют проводить точную диагностику наследственных болезней в пренатальном периоде.