
- •Чернівецький національний університет ім. Ю. Федьковича
- •Оптичні технології в зв’язку
- •1. Поняття про перетворення, аналіз спектрів сигналу та фільтрацію сигналів [1-5]
- •1.1. Отримання образів сигналів. Мета. Аналіз спектрів
- •1.1.1. Фур’є перетворення
- •1.1.2. Деякі властивості Фур’є перетворення
- •1.2. Згортка. Розмиття сигналу
- •1.3. Віконне Фур’є перетворення
- •1.4. Поняття про вейвлет-перетворення
- •1.5. Поняття про фільтрацію сигналу
- •1.6. Деякі приклади фільтрації
- •1.6.1. Фільтрація адитивних завад
- •1.6.2. Фільтрація мультиплікативних завад
- •1.6.3. Фільтрація постійної складової
- •1.6.4. Диференціювання сигналу
- •1.7. Нейронні і нейроподібні мережі та їх оптична реалізація
- •1.7.1. Структура нейронних мереж
- •1.7.2. Алгоритм роботи нейронної мережі. Алгоритм Хопфілда
- •1.7.3. Перспективи розвитку оптичних нейронних мереж
- •1.7.4. Реалізація оптичних нейронних мереж
- •2. Системи багатохвильового ущільнення
- •2.1. Вступ до wdm
- •2.2. Модель взаємодії wdm з транспортними технологіями [6-10]
- •2.3. Блок-схема систем з wdm
- •2.4. Вузькосмугові і широкосмугові wdm
- •2.5. Рекомендації itu-t відносно довжин хвиль в системах wdm
- •2.5.1. Стандартний канальний план і його використання
- •Стандартний канальний план з розносом каналів на 100 гГц
- •Стандартний канальний план при розносі каналів на 200 гГц
- •Сітка частот wdm
- •2.5.2. Типові характеристики систем wdm
- •2.6. Синхронні оптичні мережі sonet і sdh
- •2.6.1. Відмінності між sonet і sdh
- •2.6.2. Основні сигнали sonet і sdh
- •Як в sonet так I в sdh швидкість передавання фреймів складає 8000 фреймів/с, що відповідає періоду повторення фреймів 125 мкс.
- •2.7. Структура синхронних сигналів
- •2.7.2. Фрейми сигналів вищого рівня
- •2.7.3. Структура фрейма sdh
- •Характеристики волокон згідно Рекомендаціям g.652.
- •Характеристики волокон згідно Рекомендацій g.655
- •2.9. Комплектуючі пристрої та елементи систем багатохвильового ущільнення [6,18,19]
- •2.9.1. Основні визначення
- •2.9.2. Типи оптичних рознімів
- •2.10. Мультиплексування з розділенням за довжиною хвилі
- •2.11. Циркулятори
- •3. Безпроводний оптичний зв’язок. Принципи. Втрати
- •3.1. Беспровідні оптичні системи зв’язку. Основні абревіатури
- •3.2. Загальні характеристики. Принципи побудови [20-35]
- •3.3.1. Преваги fso-систем
- •3.3.2. Недоліки fso-систем
- •3.3.3. Області застосування
- •3.4. Структура безпроводної оптичної системи зв’язку
- •3.6. Рівняння системи зв’язку
- •3.7. Втрати і завади в атмосферному каналі зв’язку
- •3.7.1. Вібраційні завади
- •3.7.2. Вплив турбулентності на характеристики оптичного каналу
- •3.8. Загасання сигналу в атмосфері [36-46]
- •3.8.1. Модель атмосфери. Загасання сигналу
- •3.8.2. Фракції атмосфери, які впливають на загасання сигналу
- •3.8.3. Метеорологічна дальність видимості та атмосферні втрати
- •4. Розрахунок доступності каналу fso-cистеми [47-49]
- •4.1. Розрахунок енергетичного бюджету системи – величини максимально допустимого затухання сигналу
- •4.2. Встановлення відповідності між допустимим затуханням та критичною (мінімально допустимою) мдв
- •4.3. Розрахунок імовірності виникнення погодних умов, коли мвд менша ніж
- •4.4. Оцінка метеоумов в Чернівецькому регіоні
- •4.5. Розрахунок доступності каналу аолз в Чернівецькому регіоні
- •4.6. Деякі розрахункові і експериментальні дані щодо впливу метеоумов на роботу fso-систем
- •5. Техніко-економічні показники цифрових мереж на основі аолз. Сучасний стан ринку
- •5.1. Порівняння фінансових, часових та інших витрат при побудові різних за природою ліній зв’язку [50]
- •5.2. Аналіз існуючих рішень і ринка fso-систем
- •5.3. Огляд існуючих рішень
- •5.4.2. Обладнання компанії fSona Communications (сша)
- •5.4.3. Обладнання компанії нпк «Катарсіс» (Санкт-Петербург, Росія)
- •5.4.4. Атмосферні оптичні лінії зв’язку Artolink. Ват "Мостком". Виробник: Державний рязанський приладний завод
- •5.4.4.1. Деякі загальні відомості
- •5.4.4.2. Сфери застосування
- •5.4.4.3. Принцип роботи пристрою
- •5.4.4.4. Якість та надійність передавання сигналу
- •5.4.4.5. Базові моделі і деякі технічні характеристики
- •5.4.4.6. Відмінності та особливості обладнання
- •5.4.4.7. Встановлення та інсталяція обладнання
- •5.4.4.8. Віддалений контроль
- •5.4.5. Обладнання компанії «Гранч»
- •6. Лазерна локація [20,51]
- •6.1. Лазерна локація як прикладна дисципліна
- •6.2. Переваги та недоліки лазерної локації
- •6.2.1. Технологічна простота, короткий технологічний цикл
- •6.2.2. Гарантії точності
- •6.2.3. Відсутність наземних геодезичних робот по планово-висотному обогрунтуванню при виконанні повітряного лазерно-локаційного знімання
- •6.2.4. Висока продуктивність
- •6.2.5. Можливість роботи в нічний час і будь яку пору року
- •6.2.6. Надзвичайно широкий спектр застосувань
- •6.3. Загальні принципи роботи лазерного локатора
- •6.4. Лазерно-локаційні дані
- •6.5. Імпульсний і фазовий методи вимірювання дальності
- •6.5.1. Імпульсний метод
- •6.5.2. Фазовий метод
- •6.6. Інструментальні засоби лазерної локації
- •6.6.1. Способи отримання лазерно-локаційних зображень. Основні принципи роботи типового аерознімального лідара
- •6.6.2. Функціональна схема типового лазерного локатора на прикладі системи altm компанії Optech
- •7. Системи геопозиціонування gps і глонас
- •7.1. Супутникові системи позиціонування
- •7.2. Короткий опис супутникових систем позиціонування
- •7.3. Загальні відомості про глонасс
- •7.4. Як працює система глонасс?
- •7.5. Склад системи глонасс: орбітальна структура супутників глонасс
- •Література
- •3. І.І Мохунь, п.В. Полянський. Інтегральна оптика в інформаційній техніці. Конспект лекцій. Чернівці, Рута, 79 с. (2002).
- •28. К. Дыхов, а. Максимов. Аолс – технология будущего. Вестник связи, 2, (2006).
6.6. Інструментальні засоби лазерної локації
6.6.1. Способи отримання лазерно-локаційних зображень. Основні принципи роботи типового аерознімального лідара
На рисунку 6.11 надана схема первинного лазерно-локаційного вимірювання.
Авіаційний лазерний локатор (лідар) являє собою активний засіб дистанційного зондування, який використовується для знімання (отримання лазерно-локаційних зображень) земної поверхні. Методика знімання, що реалізується лазерним локатором, полягає в наступному.
Активним елементом є напівпровідниковий лазер, який працює в імпульсному режимі з робочою довжиною хвилі в ближньому інфрачервоному діапазоні спектра. Лазер випромінює короткі імпульси, напрямок розповсюдження яких регулюється оптичною системою і зокрема скануючим елементом, що входить до її складу. Режим сканування вибирається таким чином, щоби покрити деяку наперед задану смугу сканування. У більшості випадків поперечна розгортка утворюється за рахунок використання дзеркала, яке качається за певним алгоритмом, повздовжня – за рахунок руху носія вздовж аерознімального маршруту.
Рис. 6.11. Схема первинного лазерно-локаційного вимірювання.
1 – привід сканую чого елемента, 2 – скануючий елемент, 3 – гіроскопічна система, 4 – “центр координат носія, відносно якого вимірюються його координати відносно земної поверхні.
Рис. 6.12
Зондуючі імпульси розповсюджуються по прямолінійній траєкторії від джерела в бік сцени знімання. Якщо в процесі розповсюдження зондуючий імпульс стикається з перешкодою (поверхня Землі або наземний об’єкт), то місті зустрічі лазерний пучок перевідбивається. Характер перевідбивання у в більшості випадків дифузний, в результаті чого певна доля перевідбитої енергії імпульсу повертається у бік локатора, де і реєструється приймачем випромінювання, який також входить до складу оптико-електронного блока (ОЕБ) локатора. Моменти часу, які відповідають випромінювання зондуючого імпульсу, а також реєстрації відбитого імпульсу приймачем реєструються з високою точністю за допомогою пристрою Time Interval Meter (TIM), що також входить до складу оптико-електронного блока. Це дозволяє визначити часовий інтервал, який витрачається зондиуючим імпульсом на розповсюдження від джерела і назад, що, в свою чергу, беручи до уваги прямолінійність розповсюдження лазерного пучка і сталості швидкості розповсюдження електромагнітних коливань, дозволяє виміряти дальність D від джерела до об’єкта, що викликав відбивання. Треба відзначити, що в кожному сеансі вимірювання можуть реєструватися відбивання більш ніж від одного об’єкта (рис. 6.12). З приведеного вище опису стає зрозумілим, що лазерний локатор багато в чому реалізує схему скануючого лазерного далекоміра.
Всі
первинні вимірювання координат
виконуються лазерним локатором в
геоцентричній системі координат
.
Траєкторія руху носія визначається за
рахунок встановленого на борту GPS
приймача, а його орієнтація в системі
координат (СК)
– за рахунок використання інерціальної
системи (гіроскопічного датчика) Inertial
Measurement Unit (IMU). Таким чином, для кожного
вимірювання, яке виконується лазерним
локатором, визначені просторові
координати положення GPS антени
і кути орієнтації сенсора IMU крену
,
тангажу
,
рискання
.
Взаємне
розташування точки сканування (центра
скануючого дзеркала) і фазового центра
GPS антени, визначається вектором
та вимірюється до початку аерознімальних
робот. Величина цього вектора стала на
протязі всього часу виконання знімання.
Ця обставина дозволяє в кожний момент
часу перейти від координат
до координат СК
точки сканування. Положення в геоцентричній
СК зондуючого пучка однозначно
визначається як координатами точки
сканування
і значеннями кутів
,
так і величиною аргументу сканування
,
числено рівному куту відхилення напрямку
розповсюдження зондиуючого пучка від
вертикалі в локальній СК сканерного
блока
.
Тоді наявність інформації про нахилену
дальність
дозволяє перейти до геоцентричним
координат точки відбивання
.
Отримані таким чином координати
лазерної точки є основним результатом
роботи лазерного локатора.
Отже у функціональній схемі типового лазерного локатора, можна виділити три головних структурних компоненти, взаємодія яких складає суть функціонування ЛЛ:
1. Сканерний блок, до функцій якого входять генерація лазерних імпульсів, приймання відбитого сигналу і визначення нахиленої дальності до точки відбивання. Окрім цього, до функцій сканерного блока відноситься керування розгорткою;
2. Бортовий навігаційний комплекс (БНК), робота якого базується на взаємодії в реальному часі GPS-приймача і інерціальної системи IMU. Основною функцією бортового навігаційного комплексу є забезпечення кожного первинного лазерно-локаційного вимірювання повним набором елементів зовнішнього орієнтування, які дозволяють, використовуючи виміряне значення нахиленої дальності , перейти до геодезичних координат наземної точки, в якій відбулося відбивання зондуючого пучка;
3. Мережа наземних базових GPS-станцій, які поставляють дані для проведення диференціальної корекції траєкторних даних бортового GPS-приймача. Передбачається, що кожна GPS базова станція забезпечена реальними WGS-84 координатами. В певних випадках, при невеликих розмірах території знімання, може використовуватися одна базова GPS-станція.