
- •Кострыкин в.А., Шелепов и.Г., Шубенко а.Л.
- •Введение
- •1. Термодинамические основы работы паротурбинных установок
- •1.1 Место паровой турбины в схеме преобразования энергии на электростанциях
- •1.2. Тепловой цикл паротурбинной установки. Учет потерь
- •1.3. Влияние параметров пара на кпд цикла
- •1.4.Комбинированная выработка теплоты электроэнергии. Регенеративный подогрев питательной воды.
- •1.5. Классификация паровых турбин для привода турбогенераторов
- •2. Основы газодинамики сжимаемой жидкости
- •2.1 Уравнения равновесия и движения жидкостей
- •2.2 Течение пара через сопла и каналы. Влияние сил трения
- •2.3 Определение размеров сопл
- •3. Ступень турбины
- •3.1 Преобразование энергии в ступени турбины
- •3.2 Расчет и построение треугольников скоростей. Мощность и работа ступени
- •3.3 Относительный лопаточный кпд ступени
- •3.4 Решетки турбин
- •3.5 Относительный внутренний кпд ступени
- •3.6 Влияние влажности на работу турбинной ступени
- •4. Многоступенчатые турбины
- •4.1 Процесс расширения пара в многоступенчатой турбине
- •4.2 Выбор конструкции проточной части. Предельная мощность однопоточной турбины
- •4.3 Распределение теплоперепадов между ступенями
- •4.4 Осевое усилие на упорный подшипник турбины
- •5. Переменные режимы работы паровых турбин
- •5.1 Влияние изменения расхода пара на распределение давлений и теплоперепадов по ступеням турбины
- •5.2 Работа ступени при нерасчетном режиме
- •5.3 Способы парораспределения и их влияние на тепловой процесс
- •5.4 Изменение нагрузки турбины способом скользящего давления
- •6. Турбины для комбинированной выработки теплоты и электроэнергии
- •6.1 Турбины с противодавлением
- •6.2 Турбины с одним промежуточным регулируемым отбором пара
- •6.3 Турбины с регулируемым отбором пара и противодавлением
- •6.4 Турбины с двумя регулируемыми отборами пара
- •6.5 Многоступенчатый подогрев сетевой воды
- •7. Конденсационные устройства
- •7.1 Назначение и принцип действия
- •7.2 Охлаждение циркуляционной воды
1.4.Комбинированная выработка теплоты электроэнергии. Регенеративный подогрев питательной воды.
В тех случаях, когда наряду с потребителями электроэнергии в районе электростанции имеются потребители тепловой энергии (например, системы отопления, промышленные потребители теплоты), большое экономическое значение имеет комбинированная выработка электроэнергии и теплоты. Для удовлетворения этих потребителей может быть использована теплота отработавшего в турбине пара.
Как правило, температурный уровень теплоносителя tп, необходимый потребителям теплоты, превышает температуру пара, отработавшего в конденсационной турбине. Поэтому потребители теплоты используют пар повышенного противодавления pп, при котором температура конденсации
tпк = tп.
Теплота конденсации, которая в ПТУ, работающей без теплового потребителя, отдается циркуляционной воде, безвозвратно теряется. В случае же когда такой потребитель имеется, эта теплота полезно используется.
На конденсационных электрических станциях (КЭС) с охлаждающей водой теряется около 60% теплоты сгорания топлива. Если кроме электрической энергии необходима также теплота, то в установках с раздельной выработкой теплоты и электроэнергии (рис.1.6,а) приходится дополнительно сжигать топливо.
При комбинированной выработке теплоты и электрической энергии (рис. 1.6,б) используют, например, турбину с противодавлением 7, после которой пар направляется тепловому потребителю 6. Следовательно, в такой установке используется вся теплота пара. Поскольку электрическая мощность турбины 7 зависит от расхода пара, необходимого потребителю теплоты 6, для выработки недостающего количества электрической энергии устанавливают дополнительно конденсационную турбину 2.Экономия теплоты при комбинированной выработке
,
(1.21)
где Qp
и Qк
- общие
затраты теплоты при раздельной и
комбинированной
выработке;
Qп
- теплота, переданная тепловому
потребителю;
-
коэффициент, характеризующий электрическую мощность, выработанную на базе теплового потребителя.
Рис 1.6 Схемы раздельной (а) и комбинированной (б) выработки теплоты и электроэнергии:
1-котел, 2-конденсационная турбина, 3-электрический генератор, 4-конденсатор, 5-насос, 6-потребитель теплоты, 7-турбина с противодавлением
Таким образом, выигрыш экономичности электростанции пропорционален электроэнергии, вырабатываемой турбиной с противодавлением.
Оценка совершенства ПТУ при комбинированной выработке электроэнергии и теплоты по абсолютному КПД теряет смысл, поскольку вся теплота пара, идущего на турбину с противодавлением, используется полностью.
Если имеется не один, а несколько тепловых потребителей, в которых используется пар при разных температурах, устанавливают несколько турбин, отдающих пар при различных противодавлениях. Можно также создать турбину с одним или несколькими отборами пара для внешних потребителей.
Некоторое количество теплоты может быть использовано также на самой электростанции для подогрева питательной воды, поступающей в котел. Вместо того чтобы подогревать питательную воду в самом котле теплотой сжигаемого топлива, можно для повышения ее температуры использовать пар, отбираемый из турбины. В результате теплота конденсации не теряется в конденсаторе с охлаждающей водой, а полезно используется в подогревателе питательной воды. Так как при этом осуществляется регенерация теплоты, то такие подогреватели называются регенеративными.
Получаемое в регенеративном цикле повышение экономичности (как и с внешним потребителем теплоты) пропорционально энергии пара, который после турбины направляется тепловому потребителю. Увеличение числа отборов на регенерацию повышает термический КПД регенеративного цикла, однако усложняет и удорожает ПТУ.
Регенеративный подогрев питательной воды применяют как на ТЭС, так и на АЭС.