Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Книги / Часть_1.doc
Скачиваний:
993
Добавлен:
12.06.2014
Размер:
1.92 Mб
Скачать

1. Термодинамические основы работы паротурбинных установок

1.1 Место паровой турбины в схеме преобразования энергии на электростанциях

Турбинами (от латинского слова turbo — вихрь, вращение) называют тепловой двигатель, в котором кинетическая и потен­циальная энергии потока рабочего тела преобразуется в механическую энергию вращения вала. В зависимости от типа рабочего тела турбины разделяют на паровые, газовые и гидравлические.

В паровых турбинах рабочим телом, как правило, служит водяной пар. Паровая турбина является одним из основных элементов тепловой (ТЭС) и атомной (АЭС) электрических станций. Тепловые электрические станции, предназначенные для производства электроэнергии, называют конденсационными электростанциями (КЭС). Если на ТЭС водяной пар используется не только для выработки электроэнергии, но и для теплоснабжения, такую электростанцию называют теплоэлектроцентралью (ТЭЦ). Преобразование тепловой энергии в электриче­скую на ТЭС происходит в паротурбинной установке (ПТУ), основными элементами которой являются котел, турбина, конденсатор и электрический генератор.

Для определения места турбины в схеме преобразования энергии на ТЭС рассмотрим принципиальную схему ПТУ с промежуточным перегревателем (рис. 1.1, а) [1,2].

Рис. 1.1. Принципиальная схема паротурбинной установки ТЭС с промежуточ­ным перегревателем (а) и T,s-диаграмма ее цикла (б):

1 — котел, 2 — перегреватель, 3 — промежуточный перегреватель, 4, 5, 6 — ЧВД, ЧСД и ЧНД турбины, 7 — электрический генератор, 8 — конденсатор, 9 —циркуляционный на­сос, 10 — конденсатный насос, 11 — регенеративный подогреватель 12 — деаэратор, 13 — питательный насос

Если потери в турбине и насосах не учитывают (идеальные турбины и насосы), ПТУ работает по идеальному циклу Ренкина с промежуточным перегревом, T,s-диаграмма которого показана на рис. 1.1,б (далее преобразование энергии будем рассматривать параллельно по рис. 1.1, а и б).

Рабочим телом в ПТУ являются вода и водяной пар. Рабочее тело от конденсатора 8 до деаэратора 12 называют основным конденсатом, а от деаэратора до котла 1 — питательной водой.

Питательный насос 13 служит для повышения давления питательной воды до начального давления ро и подачи ее в котел. При этом на 1 кг питательной воды затрачивается работа LH. Процесс изоэнтропного (без потерь) сжатия воды насосом изображен в T-s-диаграмме линией ab.

В котле 1 в результате химических реакций окисления (горения) органического топлива происходит выделение теплоты. Эта теплота передается воде и водяному пару. В котле про­исходят нагрев воды при постоянном давлении до температуры кипения (линия bc на T,s-диаграмме) и испарение ее (линия cd), а также перегрев пара до температуры t0 (линия de).

Вышедший из пароперегревателя пар, имеющий энтальпию h0 и температуру to (точка е на T,s-диаграмме), направляется в часть 4 высокого давления (ЧВД) турбины, где расширяется и направляется в промежуточный перегреватель 3. Из промежу­точного перегревателя пар, имеющий энтальпию hпп и темпера­туру tnn (точка g на T,s-диаграмме), снова поступает в турбину—в ее часть 5 среднего давления (ЧСД), а затем в часть 6 низкого давления (ЧНД).

В турбине, работающей без потерь и теплообмена с внешней средой, процесс расширения пара протекает по изоэнтропе— линии ef для ЧВД и gm для ЧСД и ЧНД на T,s-диаграмме.

Отработавший в турбине пар поступает в конденсатор 8, где при неизменном давлении рк производится отбор от него теплоты охлаждающей (циркуляционной) водой, которая под­водится к конденсатору циркуляционным насосом 9. Процесс конденсации пара показан на T,s-диаграмме линией mа. Конденсат, имеющий энтальпию h'к, откачивается конденсатным насосом и поступает в регенеративный подогреватель 11. Для упрощения на рис. 1.1, а показан только один регенеративный подогреватель. В зависимости от типа и параметров паротурбин­ной установки регенеративных подогревателей может быть семь — десять.

В регенеративном подогревателе энтальпия конденсата по­вышается до hп за счет теплоты, полученной от пара, отбирае­мого из проточной части турбины. Далее питательная вода: поступает в деаэратор 12, где освобождается от растворенных в ней газов, для чего используется пар, отбираемый из проточной части турбины. Из деаэратора питательная вода откачивается питательным насосом и подается в котел. Таким образом, замыкается цикл рабочего тела в паротурбинной установке.

Энергия вращения вала турбины передается ротору электрического генератора 7. В генераторе происходит преобразова­ние механической энергии вращения ротора в электрическую. Частота f (Гц) вырабатываемого генератором тока и частота вращения n его ротора связаны соотношением

f =(m/2)* n/60, (1.1)

где m — число полюсов генератора.

В Европе принята частота переменного тока 50 Гц, поэтому в ПТУ, имеющих частоту вращения n = 50с-1 (3000 об/мин) применяют двухполюсные генераторы. На АЭС применяют также турбины, имеющие частоту вращения n = 25с-1 (1500об/мин). В этом случае не­обходимы специальные четырехполюсные генераторы.

Так как на выводах генератора пока не удается получить напряжение выше 20 000 В, то для уменьшения потерь энергии в линиях электропередачи повышают с помощью трансформа­тора напряжение.

Таким образом, в многоступенчатой схеме преобразования энергии сгорания топлива в электрическую энергию паровая турбина занимает промежуточное положение — преобразует тепловую энергию водяного пара в механическую энергию вра­щения вала.

Соседние файлы в папке Книги