
- •2Кубический 2плоский ороговевающий.
- •3Призматический 3переходный
- •4Многорядный
- •2.Соединительная ткань, ее виды.
- •Соединительная ткань
- •1Собственно соединительная
- •2Скелетная. Хрящевая Костная
- •3. Мышечная ткань
- •Лекция №6 Спланхиология (наука о внутренних органах) пищеварительная система и пищеварение
- •Лекция №14. Репродуктивная система.
- •Женские половые органы.
- •Средней - гладкомышечной, или миометрия;
- •Наружной - серозной, или периметрия.
- •2) Аллергические реакции немедленного типа (гиперчувствительность немедленного типа).
- •Лекция №19. Строение и функции сердца.
- •1Ограничительная
- •2Амортизирующая
- •1Общая пауза (диастола предсердий и желудочков)
- •Лекция №20. Лимафтическая система.
- •В. Закономерности для периферических органов иммунной системы.
внутренней - слизистой, или эндометрия;
Средней - гладкомышечной, или миометрия;
Наружной - серозной, или периметрия.
Вокруг шейки матки под брюшиной располагается околоматочная клетчатка - параметрий.
Слизистая оболочка (эндометрий) образует внутренний слой стенки матки, толщина ее достигает 3 мм. Покрыта однослойным цилиндрическим эпителием и содержит маточные железы. Мышечная оболочка (миометрий) - самая мощная, построена из гладкой мышечной ткани, состоит из внутреннего и наружного косопродольных и среднего циркулярного (кругового) слоев, которые переплетаются между собой. Содержит большое количество кровеносных сосудов. Серозная оболочка (периметрии) - брюшина покрывает всю матку, за исключением части шейки.
Матка имеет связочный аппарат, при помощи которого она подвешивается и закрепляется в изогнутом положении, в результате чего ее тело наклонено над передней поверхностью мочевого пузыря. В состав связочного аппарата входят следующие парные связки: широкая, круглая связки матки, прямокишечно-маточные и крестцово-маточные связки.
В. Маточная (фаллопиева) труба, или яйцевод (tuba uterina; греч. , salpinx), - парное трубчатое образование длиной 10-12 см, по которому яйцеклетка выводится в матку (отсюда одно из названий трубы - яйцевод). В маточной трубе происходит оплодотворение яйцеклетки и начальные стадии развития зародыша. Просвет трубы колеблется от 2 до 4 мм. Находится в полости малого таза сбоку от матки в верхнем отделе широкой связки. Один конец маточной трубы соединен с маткой, другой - расширен в воронку и обращен к яичнику. В маточной трубе различают 4 части:
маточную, которая заключена в толщу стенки матки;
перешеек маточной трубы - самая узкая и вместе с тем самая толстостенная часть трубы, которая находится между листками широкой связки матки;
ампулу маточной трубы, на которую приходится почти половина длины всей маточной трубы;
воронку маточной трубы, которая заканчивается длинными и узкими бахромками трубы.
Через отверстия маточных труб, матку и влагалище полость брюшины у женщин сообщается с внешней средой. Поэтому при несоблюдении гигиенических условий возможно попадание инфекции во внутренние половые органы и в брюшинную полость женщины.
Стенка маточной трубы образована:
слизистой оболочкой, покрытой однослойным цилиндрическим мерцательным эпителием;
гладкомышечной оболочкой, представленной наружным продольным и внутренним циркулярным (круговым) слоями;
серозный оболочкой - частью брюшины, образующей широкую связку матки.
Г. Влагалище (vagina; греч. colpos) - это орган совокупления. Представляет собой растяжимую мышечно-фиброзную трубку длиной 8-10 см, толщиной стенки около 3 мм. Верхним концом влагалище начинается от шейки матки, нижним концом открывается в преддверие влагалища. У девушек отверстие влагалища закрыто девственной плевой (gymen), место прикрепления которой отграничивает преддверие от влагалища. Девственная плева представляет собой полулунную или продырявленную пластинку слизистой оболочки. Во время первого полового акта девственная плева разрывается, и ее остатки образуют лоскуты девственной плевы. Разрыв девственной плевы (дефлорация) сопровождается небольшим кровотечением.
Впереди влагалища расположены мочевой пузырь и мочеиспускательный канал, а сзади - прямая кишка. Стенка влагалища состоит из трех оболочек:
наружной - адвентициальной, построенной из рыхлой соединительной ткани, содержащей большое количество эластических волокон;
средней - гладкомышечной, представленной преимущественно продольно ориентированными пучками мышечных клеток, а также пучками, имеющими циркулярное направление;
внутренней - слизистой оболочки, покрытой неороговевающим многослойным плоским эпителием и лишенной желез. Слизистая оболочка довольно толстая (около 2 мм), образует многочисленные поперечные складки - влагалищные складки (морщины). Клетки поверхностного слоя эпителия слизистой оболочки богаты гликогеном, который под влиянием обитающих во влагалище микробов распадается с образованием молочной кислоты. Это придает влагалищной слизи кислую реакцию и обусловливает ее бактерицидность по отношению к патогенным микробам. Эпителий влагалища продолжается на влагалищную часть шейки матки. Стенки влагалища охватывают последнюю, образуя вокруг нее узкий щелевидный свод влагалища, задняя часть которого более глубокая.
Воспаление яичника называется оофоритом, слизистой оболочки матки - эндометритом, маточной трубы - сальпингитом, влагалища - вагинитом (кольпитом).
Наружные женские половые органы расположены в переднем отделе промежности в области мочеполового треугольника и включают женскую половую область и клитор.
А. К женской половой области относятся лобок, большие и малые половые губы, преддверие влагалища, большие, малые железы преддверия и луковица преддверия.
Лобок (mons pubis) вверху отделен от области живота лобковой бороздой, а от бедер - тазобедренными бороздами. Лобок (лобковое возвышение) покрыт волосами, которые продолжаются на большие половые губы. В области лобка хорошо развит подкожный жировой слой.
Большие половые губы (labia majora pudendi) представляют собой округлую парную кожную складку длиной 7-8 см, шириной 2-3 см, содержащей большое количество жировой ткани. Большие половые губы ограничивают с боков половую щель и соединяются между собой передней (в области лобка) и задней (перед заднепроходным отверстием) спайками губ.
Малые половые губы (labia minora pudendi) - парные продольные тонкие кожные складки. Они расположены медиальнее и скрыты в половой щели между большими половыми губами, ограничивая преддверие влагалища. Малые половые губы построены из соединительной ткани без жировой клетчатки, содержат большое количество эластических волокон, мышечные клетки и венозные сплетения. Задние концы малых половых губ соединяются между собой поперечной складкой - уздечкой половых губ, а верхние концы образуют уздечку и крайнюю плоть клитора.
Преддверие влагалища (vestibulum vaginae) - это пространство между малыми половыми губами. В него открываются наружное отверстие мочеиспускательного канала, отверстие влагалища и отверстия протоков больших и малых преддверных желез.
Большая железа преддверия, или бартолинова железа (glandula vestibularis major), - парная, аналогичная бульбоуретральной железе мужчины, величиной с горошину или фасоль. Расположена с каждой стороны в основании малой половой губы, протоки обоих желез открываются здесь же. Выделяют слизеподобную жидкость, увлажняющую стенку входа во влагалище.
Малые преддверные железы (glandulae vestibularis minores) располагаются в толще стенок преддверия влагалища, куда открываются их протоки.
Луковица преддверия (bulbus vestibuli) по развитию и строению идентична непарному губчатому телу мужского полового члена. Это непарное образование, состоящее из двух - правой и левой частей, которые соединяются небольшой промежуточной частью луковицы, расположенной между клитором и наружным отверстием мочеиспускательного канала. Каждая доля представляет собой густое венозное сплетение, заложенное в основании больших половых губ, прилегая своими задними концами к большим железам преддверия.
Б. Клитор (clitoris) - это небольшое пальцевидное возвышение длиной 2-4 см впереди малых половых губ. В нем различают головку, тело и ножки, прикрепляющиеся к нижним ветвям лобковых костей. Клитор состоит их двух пещеристых тел, соответствующих пещеристым телам мужского полового члена, и содержит большое количество рецепторов. Тело клитора снаружи покрыто плотной белочной оболочкой. Раздражение клитора вызывает чувство полового возбуждения.
.Половой цикл женщины имеет специфические особенности. У женщин, как длительность, так и интенсивность полового цикла значительно более разнообразны, Это связано с различиями структуры полового (сексуального - лат. secsus -пол) чувства мужчин и женщин. По современным представлениям сексуальное чувство - это сумма двух составных частей (компонентов): духовного багажа (богатства) личности - способности к состраданию, жалости, любви, дружбе и т.д. (духовный психологический компонент сексуального чувства) и чувственного эротического (греч. erotikos - любовный) удовлетворения (чувственный эротический компонент). В структуре сексуального чувства мужчины и женщины эти компоненты неоднозначны. Если у мужчин в структуре сексуального чувства на первом месте стоит чувственный эротический компонент и лишь где-то на втором месте - духовный компонент, то у женщин, наоборот, на первом месте стоит духовный компонент и только на втором месте - чувственный эротический компонент. Другими словами, мужчина влюбляется глазами, а женщина - ушами. А еще точнее, мужчине нужно тело женщины, а женщине - душа мужчины.
Специалисты (сексологи) условно разделяют женщин по сексуальному чувству на 4 группы:
нулевая группа - конституционально фригидные женщины, у которых отсутствует чувственный эротический компонент сексуального чувства;
первая группа- женщины с чувственным эротическим компонентом, но он всплывает у них очень редко; этой группе женщин нужна духовная настройка;
вторая группа - эротически настроенные женщины: духовная настройка им также нужна, и они испытывают радость даже без оргазма, т.е. без чувственного удовлетворения;
третья группа - женщины, которые обязательно добиваются чувственного удовлетворения, т.е. оргазма. В эту группу не следует относить женщин с болезненным повышением полового влечения, обусловленным эндокринными, нервными или психическими расстройствами.
Первые три группы женщин могут довольствоваться только духовным компонентом без оргастических ощущений. Четвертая группа добивается обязательно оргастических ощущений, не довольствуясь духовным компонентом. I фаза полового цикла - половое возбуждение приводит рефлекторным и психогенным путем к изменениям в наружных и внутренних половых органах женщины. Большие и малые половые губы переполняются кровью и увеличиваются. Клитор и его головка также набухают и увеличиваются как в длину, так и в толщину. По мере нарастания возбуждения клитор подтягивается к лонному сочленению. Через 10-30 с после сенсорного или психогенного возбуждения начинается транссудация слизистой жидкости через плоский эпителий влагалища. Благодаря этой жидкости влагалище увлажняется, что способствует адекватному возбуждению рецепторов полового члена при коитусе. Транссудация сопровождается расширением и удлинением влагалища. По мере нарастания возбуждения в нижней трети влагалища в результате местного застоя крови возникает сужение, или так называемая оргастическая манжетка. Благодаря этому сужению, а также набуханию малых половых губ во влагалище образуется длинный канал, анатомическое строение которого создает оптимальные условия для возникновения оргазма у обоих партнеров. Во время оргазма в зависимости от его интенсивности наблюдаются 3-15 сокращений оргастической манжетки. Возможно, эти сокращения представляют собой аналог эмиссии и эякуляции у мужчин. Во время оргазма наблюдаются регулярные сокращения матки, которые начинаются от ее дна и охватывают все ее тело, вплоть до нижних отделов.
После оргазма наружные и внутренние половые органы обычно возвращаются к исходному состоянию. Влагалищная часть матки в течение примерно 20-30 минут остается открытой и выдвинутой в полость влагалища для приема семени. Стадия спада более длительна в том случае, если после интенсивного полового возбуждения оргазм не наступает.
Изменения других органов во время полового цикла были рассмотрены на предыдущей лекции.
Ответьте на вопросы.
1)Латинское название яичника -
2)Пространство прямокишечное-маточное –
3) Как называется процесс разрыва созревшего фолликула и выхода яйцеклетки из яичника?
4)Латинское название маточных труб –
5)Как называется слизистая оболочка матки?
6) Наружный половой женский орган, образованный пещеристыми телами –
7)Латинское название яичника –
8)Железисто-мышечный орган, относящийся к мужской половой системе, охватывающий начальный отдел мочеиспускательного канала –
9)Какие гормоны продуцирует желтое тело?
10)Во что превращаются первичные (незрелые) фоликулы яичника?
-Лекция №15. Эндокринная система и основные свойства гормонов.
ЦЕЛЬ: Знать основные свойства гормонов, методы изучения функций эндокринных желез, строение гипофиза, щитовидной железы, значение гормонов гипофиза, щитовидной железы, а также эпифиза, вилочковой и паращитовидных желез.
Уметь показывать на плакатах эндокринные железы.
Представлять основные нарушения, наблюдаемые при гипо- и гиперфункции гипофиза, щитовидной и паращитовидных желез.
К эндокринной системе относятся железы, не имеющие выводных протоков, но выделяющие во внутреннюю среду организма физиологически активные вещества - гормоны, стимулирующие или ослабляющие функции клеток, тканей и органов. Эндокринные железы наряду с нервной системой и под ее контролем обеспечивают единство и целостность организма, формируя его гуморальную регуляцию. Понятие "внутренняя секреция" было впервые введено французским физиологом К.Бернаром (1855). Термин "гормон" (греч. hormao - возбуждаю, побуждаю) был впервые предложен английскими физиологами У.Бейлисом и Э.Старлингом в 1905 г. для секретина, вещества, образующегося в слизистой оболочке двенадцатиперстной кишки под влиянием соляной кислоты желудка. К настоящему времени открыто более 100 различных веществ, наделенных гормональной активностью, синтезирующихся в железах внутренней секреции и регулирующих процессы обмена вещества.
Общие анатомо-физиологические черты:
они являются беспротоковыми;
состоят из железистого эпителия;
обильно снабжаются кровью, что обусловлено высокой интенсивностью обмена веществ и выделением гормонов;
имеют богатую сеть кровеносных капилляров с диаметром 20-30 мкм и более (синусоиды);
снабжены большим количеством вегетативных нервных волокон;
представляют единую систему эндокринных желез;
7) ведущую роль в этой системе играет гипоталамус ("эндокринный мозг") и гипофиз ("король гормональных веществ").
В организме человека различают 2 группы эндокринных желез:
чисто эндокринные, выполняющие функцию только органов внутренней секреции; к ним относятся: гипофиз, щитовидная железа, паращитовидные железы, эпифиз, надпочечники, нейросекреторные ядра гипоталамуса;
смешанные железы, в которых секреция гормонов является лишь частью разнообразных функций органа; сюда относятся: поджелудочная железа, половые железы (гонады), вилочковая железа. Кроме того, способностью вырабатывать гормоны обладают и другие органы, формально не относящиеся к эндокринным железам, например, желудок и тонкий кишечник (гастрин, секретин, энтерокринин и др.), сердце (натрийуретический гормон - аурикулин), почки (ренин, эритропоэтин), плацента (эстроген, прогестерон, хорионический гонадотропин) и др.
Гормоны обладают рядом характерных свойств:
специфичность действия - каждый гормон действует лишь на определенные органы (клетки-«мишени») и функции, вызывая специфические изменения;
высокая биологическая активность гормонов; так, например, 1 г адреналина достаточно, чтобы усилить деятельность 10 млн. изолированных сердец лягушки, а 1 г инсулина - чтобы понизить уровень сахара в крови у 125 тысяч кроликов;
дистантность действия гормонов; они оказывают влияние не на те органы, где они образуются, а на органы и ткани, расположенные вдали от эндокринных желез;
гормоны имеют сравнительно небольшой размер молекулы, что обеспечивает их высокую проникающую способность через эндотелий капилляров и через мембраны (оболочки) клеток;
быстрая разрушаемость гормонов тканями; по этой причине для поддержания достаточного количества гормонов в крови и непрерывности их действия необходимо постоянное выделение их соответствующей железой;
большинство гормонов не имеет видовой специфичности, поэтому в клинике возможно применение гормональных препаратов, полученных из эндокринных желез крупного рогатого скота, свиней и других животных;
7) гормоны действуют лишь на процессы, происходящие в клетках и их структурах, и не оказывают влияния на ход химических процессов в бесклеточной среде.
В XX веке учение о функциях гормонов и нарушениях деятельности эндокринных желез выделилось в самостоятельную дисциплину - эндокринологию.
Гипофиз (hypophysis), или нижний придаток мозга, является наиболее важной "центральной" эндокринной железой, так как своими тропными гормонами (греч. tropos - направление, поворот) он регулирует деятельность многих других, так называемых "периферических" эндок- ринных желез. Представляет собой небольшую овальную железу массой около 0,5 г, при беременности увеличивающуюся до 1 г. Расположена в гипофизарной ямке турецкого седла тела клиновидной кости. При помощи ножки гипофиз связан с серым бугром гипоталамуса.
В гипофизе выделяют 3 доли: переднюю, промежуточную (среднюю) и заднюю доли. Передняя и средняя доли объединяются в аденогипофиз, задняя доля вместе с ножкой гипофиза - называется нейрогипофизом.
А. Передняя доля гипофиза составляет 75% от массы всего гипофиза. Состоит из соединительнотканной стромы и эпителиальных железистых клеток. .
Функции тропных гормонов передней доли гипофиза.
Соматотропин (гормон роста, или соматотропный гормон) стимулирует синтез белка в организме, рост хрящевой ткани, костей и всего тела. При недостатке соматотропина в детском возрасте (рис. 306) развивается карликовость (рост менее 130 см у мужчин и менее 120 см у женщин), при избытке соматотропина в детстве - гигантизм (рост 240-250 см), у взрослых - акромегалия (греч. akros - крайний, megalu - большой).
Пролактин (лактогенный гормон, маммотропин) действует на молочную железу, способствуя разрастанию ее ткани и продукции молока (после предварительного действия на нее женских половых гормонов: эстрогенов и прогестерона).
Тиреотропин (тиреотропный гормон) стимулирует функцию щитовидной железы, осуществляя синтез и секрецию тиреоидных гормонов.
Кортикотропин (адренокортикотропный гормон) стимулирует образование и выделение в коре надпочечников глюкокортикоидов.
Гонадотропины (гонадотропные гормоны) включают фоллитропин и лютропин. Фоллитропин (фолликулостимулирующий гормон) действует на яичники и семенники. Стимулирует рост фолликулов в яичнике женщин, сперматогенез в яичках у мужчин. Лютропин (лютеинизирующий гормон) стимулирует у женщин развитие желтого тела после овуляции и синтез им прогестерона, у мужчин - развитие интерстициальной ткани яичек и секрецию андрогенов.
Б. Средняя доля гипофиза представлена узкой полоской эпителия, отделенного от задней доли тонкой прослойкой рыхлой соединительной ткани. Аденоциты средней доли вырабатывают 2 гормона.
Меланоцитостимулирующий гормон, или интермедин, оказывает влияние на пигментный обмен и приводит к потемнению кожи вследствие отложения и накопления в ней пигмента меланина. При недостатке интермедина может наблюдаться депигментация кожи (появление участков кожи, не содержащих пигмента).
Липотропин усиливает метаболизм липидов, оказывает влияние на мобилизацию и утилизацию жиров в организме.
В. Задняя доля гипофиза образована в основном клетками эпендимы, называемыми питуицитами. Она служит резервуаром для хранения гормонов вазопрессина и окситоцина, которые поступают сюда по аксонам нейронов, расположенных в гипоталамических ядрах, где осуществляется синтез этих гормонов. Нейрогипофиз - место не только депонирования, но и своеобразной активации поступающих сюда гормонов, после чего они высвобождаются в кровь.
Вазопрессин, или антидиуретический гормон, выполняет две функции: усиливает обратное всасывание воды из почечных канальцев в кровь, увеличивает тонус гладкой мускулатуры сосудов (артериол и капилляров) и повышает АД. При недостатке вазопрессина наблюдается несахарный диабет, а при избытке вазопрессина может наступить полное прекращение мочеобразования.
Окситоцин действует на гладкие мышцы, особенно матки. Он стимулирует сокращение беременной матки во время родов и изгнание плода. Наличие этого гормона является обязательным условием нормального течения родового акта.
Регуляция функций гипофиза осуществляется несколькими механизмами через гипоталамус,. Нейроны гипоталамуса вырабатывают нейросекрет, содержащий высвобождающие факторы (рилизинг-факторы) двух видов: либерины, усиливающие образование и выделение тропных гормонов гипофизом, и статины, угнетающие (ингибирующие) выделение соответствующих тропных гормонов. Кроме того, между гипофизом и другими периферическими эндокринными железами (щитовидной, надпочечниками, гонадами) имеются двусторонние "плюс-минус" взаимоотношения: тропные гормоны аденогипофиза стимулируют (плюс) функции периферических желез, а избыток гормонов последних подавляет (минус) продукцию и выделение гормонов аденогипофиза. Гипоталамус стимулирует секрецию тропных гормонов аденогипофиза, а повышение концентрации в крови тропных гормонов тормозит секреторную активность нейронов гипоталамуса. На образование гормонов в аденогипофизе существенное влияние оказывает вегетативная нервная система: симпатический ее отдел усиливает выработку тропных гормонов, парасимпатический - угнетает.
Щитовидная железа (glandula thyroidea) - непарный орган, имеющий форму галстука-бабочки. Располагается в передней области шеи на уровне гортани и верхнего отдела трахеи и состоит из двух долей: правой и левой, соединенных узким перешейком. От перешейка или от одной из долей отходит кверху отросток - пирамидальная (четвертая) доля, которая встречается примерно в 30% случаев. Масса железы у разных людей неодинакова и варьирует от 16-18 г до 50-60 г. У женщин масса и объем ее больше, чем у мужчин. Щитовидная железа является единственным органом, синтезирующим органические вещества, содержащие йод. Снаружи железа имеет фиброзную капсулу, от которой внутрь отходят перегородки, разделяющие вещество железы на дольки. В дольках находятся фолликулы, которые являются основными структурно-функциональными единицами щитовидной железы. Стенки фолликулов состоят из одного слоя эпителиальных клеток - тироцитов кубической или цилиндрической формы, расположенных на базальной мембране.. Полости фолликулов заполнены коллоидом, состоящим в основном из тиреоглобулина.. В ткани щитовидной железы концентрация йода в 300 раз выше его содержания в плазме крови. Иод содержится и в гормонах, - тироксине и трийодтиронине. Ежедневно в составе гормонов выделяется до 0,3 мг йода. Следовательно, человек должен ежедневно с пищей и водой получать йод.
Помимо фолликулярных клеток, в щитовидной железе имеются так называемые С-клетки, или парафолликулярные клетки, секретирующие гормон тиреокальцитонин (кальцитонин) - один из гормонов, регулирующий гомеостаз кальция. Эти клетки располагаются в стенке фолликулов. Гормоны тироксин (тетрайодтиронин) и трийодтиронин оказывают следующее влияние на организм человека:
1) усиливают рост, развитие и дифференцировку тканей и органов;
стимулируют все виды обмена веществ: белкового, жирового, углеводного и минерального;
увеличивают основной обмен, окислительные процессы, потребление кислорода и выделение углекислого газа;
4) стимулируют катаболизм и повышают теплообразование;
повышают двигательную активность, энергетический обмен, условнорефлекторную деятельность, темп психических процессов;
увеличивают частоту сердечных сокращений, дыхания, потливость;
7) снижают способность крови к свертыванию и т.д.
При гипофункции щитовидной железы (гипотиреозе) наблюдается: у детей - кретинизм, т.е. задержка роста, психического и полового развития, нарушение пропорций тела; у взрослых - микседема (слизистый отек), т.е. психическая заторможенность, вялость, сонливость, снижение интеллекта, нарушение половых функций, понижение основного обмена на 30-40%. При недостатке йода в питьевой воде может быть эндемический зоб - увеличение щитовидной железы.
При гиперфункции щитовидной железы (гипертиреозе) возникает диффузный токсический зоб - базедова болезнь: похудание, блеск глаз, пучеглазие, повышение основного обмена, возбудимости нервной системы, тахикардия, потливость, чувство жара, непереносимость тепла, увеличение объема щитовидной железы и т.д.
Тиреокальциотонин участвует в регуляции кальциевого обмена. Гормон снижает уровень кальция в крови и тормозит выведение его из костной ткани, увеличивая его отложение в ней. Тиреокальциотонин - гормон, сберегающий кальций в организме, своеобразный хранитель кальция в костной ткани.
Регуляция образования гормонов в щитовидной железе осуществляется вегетативной нервной системой, тиреотропином и йодом. Возбуждение симпатической системы усиливает, а парасимпатической - угнетает выработку гормонов этой железы. Тиреотропин стимулирует образование тироксина и трийодтиронина. Избыток последних гормонов в крови тормозит продукцию тиреотропина. При снижении в крови уровня тироксина и трийодтиронина выработка тиреотропина увеличивается. Незначительное содержание йода в крови стимулирует, а большое - тормозит образование тироксина и трийодтиронина в щитовидной железе.
А. Эпифиз, или шишковидное тело (corpus pineale), - небольшое овальное железистое образование, массой 0,2 г, относящееся к эпиталамусу промежуточного мозга. Находится в полости черепа над пластинкой крыши среднего мозга, в борозде между двумя ее верхними холмиками. До настоящего времени она полностью не изучена, ее и сейчас называют загадочной железой В эпифизе у людей в старческом возрасте встречаются причудливой формы отложения - песочные тела (мозговой песок), придающие ему сходство с еловой шишкой или тутовой ягодой (чем и объясняется его название). Известны 2 гормона эпифиза: мелатонин и гломерулотропин. Мелатонин участвует в регуляции пигментного обмена. Он является антагонистом интермедина, обесцвечивает пигментные клетки (меланофоры) и вызывает посветление кожи. Гломерулотропин принимает участие в стимуляции секреции гормона альдостерона надпочечниками.
Б. Вилочковая, или зобная, железа, тимус (thymus), является наряду с красным костным мозгом центральным органом иммуногенеза. В тимусе стволовые клетки, поступающие сюда из костного мозга с током крови, пройдя ряд промежуточных стадий, превращаются в конечном счете в Т-лимфоциты, ответственные за реакции клеточного иммунитета. Помимо иммунологической функции и функции кроветворения, тимусу присуща эндокринная деятельность. На этом основании эта железа рассматривается и как орган внутренней секреции.
Тимус состоит из двух асимметричных по величине долей: правой и левой, соединенных рыхлой соединительной тканью. Располагается тимус в верхней части переднего средостения, позади рукоятки грудины. В период своего максимального развития (10-15 лет) масса тимуса достигает в среднем 37,5 г, длина его в это время составляет 7,5-16 см. С 25-летнего возраста начинается возрастная инволюция тимуса - постепенное уменьшение железистой ткани с замещением ее жировой клетчаткой. В тимусе образуются гормоны: тимозин, тимопоэтин, тимусный гуморальный фактор - химические стимуляторы иммунных процессов. В настоящее время эндокринная функция тимуса изучена недостаточно.
В. Паращитовидные (околощитовидные) железы (glandule parathyroideae) представляют собой округлые или овоидные тельца, расположенные на задней поверхности долей щитовидной железы. Количество этих телец непостоянно и может изменяться от 2 до 7-8, в среднем 4, по две железы позади каждой боковой доли щитовидной железы. Общая масса желез составляет от 0,13-0,36 г до 1,18 г. Они секретируют гормон паратирин (паратгормон, или паратиреокрин), регулирующий обмен кальция и фосфора в организме. Паратгормон способствует поддержанию нормального уровня кальция в крови (9-11 мг%), который необходим для нормальной деятельности нервной и мышечной систем и отложения кальция в костях.
При гипофункции паращитовидных желез (гипопаратиреозе) наблюдается кальциевая тетания - приступы судорог вследствие уменьшения содержания кальция в крови и увеличения калия, что резко повышает возбудимость. При гиперфункции паращитовидных желез (гиперпаратиреозе) содержание кальция в крови увеличивается выше нормы (2,25-2,75 ммоль/л - 9-11 мг%) и наблюдается отложение кальция в необычных для него местах: в сосудах, аорте, почках.
Между гормонообразовательной функцией паращитовидных желез и уровнем кальция в крови имеется непосредственная двусторонняя связь. При увеличении в крови концентрации кальция гормонообразовательная функция паращитовидных желез уменьшается, а при снижении - гормонообразовательная функция желез увеличивается.
. Поджелудочная железа и ее гормоны..
ЦЕЛЬ: Знать строение и функции эндокринной части поджелудочной, половых желез и надпочечников, влияние гормонов поджелудочной железы, надпочечников и половых желез на обмен веществ.
Представлять проявления патологии этих желез при их гипо- и гиперфункции.
Поджелудочная железа (pancreas) относится к железам со смешанной функцией. В ней образуется не только панкреатический пищеварительный сок, но и вырабатываются гормоны: инсулин, глюкагон, липокаин и другие. Эндокринная часть поджелудочной железы представлена фуппами эпителиальных клеток, образующими своеобразной формы панкреатические островки (островки П.Лангерганса), отделенные от остальной экзокринной части железы тонкими прослойками рыхлой волокнистой соединительной ткани. Панкреатические островки имеются больше всего в хвостовой части железы. Величина островков составляет от 0,1 до 0,3 мм, количество - 1-2 млн., а общая масса их не превышает 1% массы поджелудочной железы. Островки состоят из эндокринных клеток - инсулоцитов нескольких видов. Примерно 70% всех клеток составляют В-клетки, вырабатывающие инсулин, другая часть клеток (около 20%) - это А-клетки, которые продуцируют глюкагон. D-клетки (5-8%) секретируют соматостатин. Он задерживает выделение инсулина и глюкагона Главным гормоном поджелудочной железы является инсулин, который выполняет следующие функции:
способствует синтезу гликогена и накоплению его в печени и мышцах;
повышает проницаемость клеточных мембран для глюкозы и способствует интенсивному окислению ее в тканях;
3) вызывает гипогликемию, т.е. снижение уровня глюкозы в крови и как следствие этого недостаточное поступление глюкозы в клетки ЦНС, на проницаемость которых инсулин не действует;
4) нормализует жировой обмен и уменьшает кетонурию;
5) снижает катаболизм белков и стимулирует синтез белков из аминокислот.
Образование и секреция инсулина регулируется уровнем глюкозы в крови при участии вегетативной нервной системы и гипоталамуса.. Возбуждение блуждающих нервов стимулирует образование и выделение инсулина, симпатических - тормозит этот процесс.
Концентрация инсулина в крови зависит не только от интенсивности его образования, но и от скорости его разрушения. Инсулин разрушается ферментом инсулиназой, находящейся в печени и скелетных мышцах. Наибольшей активностью обладает инсулиназа печени. При однократном протекании через печень крови может разрушиться до 50% содержащегося в ней инсулина.
При недостаточной внутрисекреторной функции поджелудочной железы наблюдается тяжелое заболевание - сахарный диабет, или сахарное мочеизнурение. Основными проявлениями этого заболевания являются: гипергликемия (до 44,4 ммоль/л, или 800 мг%), глюкозурия (до 5% сахара в моче), полиурия (обильное мочеиспускание: от 3-4 л до 8-9 л в сутки), полидипсия (повышенная жажда), полифагия (повышенный аппетит), похудание (падение веса), кетонурия. В тяжелых случаях развивается диабетическая кома (потеря сознания).
Второй гормон поджелудочной железы - глюкагон по своему действию является антагонистом инсулина и выполняет следующие функции:
расщепляет гликоген в печени и мышцах до глюкозы;
вызывает гипергликемию;
стимулирует расщепление жира в жировой ткани;
4) повышает сократительную функцию миокарда, не влияя на его возбудимость.
На образование глюкагона в А-клетках оказывает влияние количество глюкозы в крови. При повышении содержания глюкозы в крови секреция глюкагона уменьшается (тормозится), при понижении - увеличивается. Гормон аденогипофиза - соматотропин повышает активность А-клеток, стимулируя образование глюкагона.
Третий гормон - липокаин способствует утилизации жиров за счет образования липидов и окисления жирных кислот в печени. Он предотвращает жировое перерождение печени у животных после удаления поджелудочной железы.
Надпочечник (glandula suprarenalis) имеет жизненно важное значение для организма. Удаление обоих надпочечников приводит к смерти вследствие потери большого количества натрия с мочой и снижения уровня натрия в крови и тканях (из-за отсутствия альдостерона). Надпочечник - это парный орган, находящийся в забрюшинном пространстве непосредственно над верхним концом соответствующей почки. Масса одного надпочечника у взрослого человека составляет около 12-13г. Снаружи надпочечник покрыт фиброзной капсулой, отдающей в глубь органа многочисленные соединительнотканные трабекулы и делящей железу на два слоя: наружный - корковое вещество (кора) и внутренний - мозговое вещество. На долю коры приходится около 80% массы и объема надпочечника. В коре надпочечника различают 3 зоны: наружную - клубочковую, среднюю - пучковую и внутреннюю -сетчатую. клетки каждой из них вырабатывают гормоны, отличающиеся друг от друга не только по химическому составу, но и по физиологическому действию.
Клубочковая зона - самый тонкий слой коры, прилегающий к капсуле надпочечника, вырабатывает минералкортикоиды: альдостерон, дезоксикортикостерон.
Пучковая зона - большая часть коры, очень богата липидами, холестерином, а также витамином С. Пучковая зона продуцирует глюкокортикоиды: гидрокортизон, кортизон, кор-тикостерон.
Сетчатая зона прилегает к мозговому слою. Сетчатая зона образует половые гормоны: андрогены, эстрогены и в небольшом количестве прогестерон.
Мозговое вещество надпочечника располагается в центре железы. Вырабатывают катехоламин - адреналин; норэпинефроциты, рассеянные в мозговом веществе в виде небольших групп, вырабатывают другой катехоламин - норадреналин.
A. Физиологическое значение глюкокортикоидов:
1) стимулируют адаптацию и повышают сопротивляемость организма к стрессу;
влияют на обмен углеводов, белков, жиров;
задерживают утилизацию глюкозы в тканях;
способствуют образованию глюкозы из белков (гликонеогенез);
вызывают распад (катаболизм) тканевого белка и задерживают формирование грануляций;
угнетают развитие воспалительных процессов (противовоспалительное действие);
подавляют синтез антител;
подавляют активность гипофиза, особенно секрецию АКТГ.
Б. Физиологическое значение минералкортикоидов:
1)сохраняют в организме натрий, так как усиливают обратное всасывание натрия в почечных канальцах;
2)выводят из организма калий, так как уменьшают обратное всасывание калия в почечных канальцах;
3)способствуют развитию воспалительных реакций, так как повышают проницаемость капилляров и серозных оболочек (провоспалительное действие);
4)повышают осмотическое давление крови и тканевой жидкости (за счет увеличения ионов натрия в них);
5) увеличивают тонус сосудов, повышая АД.
При недостатке минералкортикоидов организм теряет столь большое количество натрия, что это ведет к изменениям внутренней среды, несовместимым с жизнью. Поэтому минералкортикоиды образно называют гормонами, сохраняющими жизнь.
При недостаточной функции коры надпочечников развивается бронзовая, или аддисонова, болезнь - : адинамия (мышечная слабость), похудание (снижение массы тела), гиперпигментация кожи и слизистых оболочек (бронзовая окраска), артериальная гипотония.
При гиперфункции коры надпочечников - преобладание синтеза половых гормонов (резкое изменение вторичных половых признаков).
Адреналин и норадреналин вызывают:
усиление и удлинение эффекта влияния симпатической нервной системы;
гипертензию, за исключением сосудов мозга, сердца, легких и работающих скелетных мышц;
расщепление гликогена в печени и мышцах и гипергликемию;
стимуляцию работы сердца;
повышение энергетики и работоспособности скелетных мышц;
расширение зрачков и бронхов;
7) появление так называемой гусиной кожи (выпрямление кожных волос) вследствие сокращения гладких мышц кожи, поднимающих волосы(пиломоторы);
8) торможение секреции и моторики желудочно-кишечного тракта.
В целом адреналин и норадреналин называются гормонами тревоги или "аварийными гормонами".
Половые железы (гонады): яичко (testis) у мужчин и яичник (ovarium) у женщин относятся к железам со смешанной функцией. Внутрисекреторная функция проявляется в секреции половых гормонов, которые поступают в кровь.
Различают две группы половых гормонов: мужские - андрогены (греч. andros - мужской) и женские - эстрогены (греч. oistrus - течка). И те, и другие образуются из холестерина и дезоксикортикостерона как в мужских, так и в женских половых«.железах, но не в одинаковых количествах. Эндокринной функцией в яичке обладает интерстиций яичка, который выделяет мужские половые гормоны: тестостерон и андростерон.
Физиологическое значение андрогенов - тестостерона и андростерона:
стимулируют развитие вторичных половых признаков;
влияют на половую функцию и размножение;
оказывают большое влияние на обмен веществ: увеличивают образование белка, особенно в мышцах, уменьшают содержание жира в организме, повышают основной обмен;
влияют на функциональное состояние ЦНС, на высшую нервную деятельность и поведение.
Женские половые гормоны образуются: эстрогены - в зернистом слое созревающих фолликулов, а также в клетках интерстиция яичников, прогестерон - в желтом теле яичника на месте лопнувшего фолликула.
Физиологическое значение эстрогенов:
стимулируют рост половых органов и развитие вторичных половых признаков;
способствуют проявлению половых рефлексов;
вызывают гипертрофию слизистой оболочки матки в первую половину менструального цикла;
4) при беременности - стимулируют рост матки. Физиологическое значение прогестерона:
1) обеспечивает имплантацию и развитие плода в матке при беременности;
2) тормозит выработку эстрогенов;
тормозит сокращение мускулатуры беременной матки и уменьшает ее чувствительность к окситоцину;
задерживает овуляцию за счет угнетения образования гормона передней доли гипофиза - лютропина.
Образование половых гормонов в половых железах находится под контролем гонадотропных гормонов передней доли гипофиза: фоллитропина и лютропина. Функция аденогипофиза контролируется гипоталамусом, секретирующим гипофизотропный гормон - гонадолиберин. Последний, может усиливать или угнетать выделение гонадотропинов гипофизом
Удаление (кастрация) половых желез в разные периоды жизни приводит к различным эффектам. У очень молодых организмов - вызывает остановку в росте и развитии половых органов, их атрофию; у взрослых - изменения ограничиваются половыми органами.
АПУД – система.
Это система клеток в различных органах, которые вырабатывают гормоны: желудок и тонкий кишечник – гастрин, секретин, энтерокринин и др.; сердце – натрийдиуретический гормон-аурикулин: почки – ренин. Эритропоэтин; плацента – прогестерон, эстроген и др.Клетки называются апудоциты.Они также выделяют серотонин. Гистамин. Катехоламины и другие гормоны.Ими контролируется болевая чувствительность, биоритмы, сон, процессы обучения, память, поведенние. При некоторых обстоятельствах БАВ выделяют лейкоциты, эндотелий сосудов. Таким образом все органы обладают гормональной активностью для контроля и управления местными реакциями и обменными процессами местного характера.
Ответьте на вопросы:
1)Какие железы называются эндокринными?
2)Назовите железы смешанной секреции.
3)Что такое гормон?
4)Что объединяет аденогипофиз?
5)Перечислите гормоны передней доли гипофиза.
6)Что наблюдается при избытке соматотропина в детстве?
7)Перечислите гормоны средней доли гипофиза.
8)Что делает гормон интермидин?
9)Какие гормоны выделяет щитовидная железа?
10)Какой гормон вырабатывают паращитовидные железы?
.
Лекция №16. КРОВЬ, ЕЕ СОСТАВ И ФУНКЦИИ. ПЛАЗМА И ФОРМЕННЫЕ ЭЛЕМЕНТЫ.
ЦЕЛЬ: Знать морфологию, функции, физико-химические свойства крови, ее составных частей: плазмы и форменных элементов. Эти знания необходимы в клинической практике как эталон при постановке диагноза, наблюдении за течением болезни и для контроля за выздоровлением.
Кровь (sanguis, haema; греч. haima, haimatos) - это жидкая гкань, циркулирующая по сосудам, осуществляющая транспорт различных зеществ в пределах организма и обеспечивающая питание и обмен веществ всех клеток тела. Красный цвет крови придает гемоглобин, содержащийся в эритроцитах. Учение о крови и ее болезнях называется гематологией.
У многоклеточных организмов большинство клеток не имеет непосредственного контакта с внешней средой, их жизнедеятельность обеспечивается наличием внутренней среды (кровь, лимфа, тканевая жидкость). Из нее они получают необходимые для жизни вещества и выделяют в нее же продукты метаболизма. Для внутренней среды организма характерно этносительное динамическое постоянство состава и физико-химических свойствкоторое называется – гомеостаз.
В понятие "система крови") входят: кровь, органы кроветворения (красный костный мозг, лимфатические узлы и др.), органы кроворазрушения и механизмы регуляции (регулирующий нейрогумоэальный аппарат).
Остановка сердца и прекращение движения крови немедленно приводит организм к гибели.
Физиологические функции крови:
Дыхательная - перенос кислорода от легких к тканям и углекислого газа от тканей к легким;
Трофическая (питательная) - доставка питательных веществ, витаминов, минеральных солей и воды от органов пищеварения к тканям;
Экскреторная (выделительная) - удаление из тканей конечных продуктов метаболизма, лишней воды и минеральных солей;
Терморегуляторная - регуляция температуры тела путем охлаждения энергоемких органов и согревания органов, теряющих тепло;
Гомеостатическая - поддержание стабильности ряда констант го-меостаза: рН, осмотического давления, изоионии и т.д.;
регуляция водно-солевого обмена между кровью и тканями;
защитная - участие в клеточном (лейкоциты), гуморальном (антитела) иммунитете, в свертывании для прекращения кровотечения;
гуморальная регуляция - перенос гормонов, медиаторов и др.;
креаторная (лат. creatio - созидание) - перенос макромолекул, осуществляющих межклеточную передачу информации с целью восстановления и поддержания структуры тканей.
Общее количество крови в организме взрослого человека в норме составляет 6-8% массы тела и равно примерно 4,5-6 л. В сосудистой системе - 60-70% крови - циркулирующая кровь. 30-40% содержится в специальных кровяных депо, - резервная, кровь.
Кровь состоит из жидкой части - плазмы и взвешенных в ней клеток -форменных элементов: эритроцитов, лейкоцитов и тромбоцитов. На долю форменных элементов в циркулирующей крови приходится 40-45%, на долю плазмы - 55-60%. В депонированной крови наоборот: форменных элементов - 55-60%, плазмы - 40-45%. Объемное соотношение форменных элементов и плазмы (или часть объема крови, приходящаяся на долю эритроцитов), называется гематокритом
Показатели крови:
Относительная плотность (удельный вес) цельной крови равен 1,050-1,060, эритроцитов - 1,090, плазмы - 1,025-1,034. Вязкость цельной крови по отношению к воде составляет около 5, а вязкость плазмы - 1,7-2,2. Вязкость крови обусловлена наличием белков и особенно эритроцитов.
Плазма содержит 90-92% воды и 8-10% сухого остатка белков (7-8%) и минеральных солей (1%). Белки плазмы (их более 30) включают 3 основные группы:
альбумины (около 4,5%) обеспечивают онкотическое давление, связывают лекарственные вещества, витамины, гормоны, пигменты;
глобулины (2-3%) обеспечивают транспорт жиров, липоидов в составе липопротеинов, глюкозы - в составе гликопротеинов, меди, железа
- в составе трансферрина, выработку антител, а также а- и (3-агглютининов крови;
3) фибриноген (0,2-0,4%) участвует в свертывании крови.
Небелковые азотсодержащие соединения плазмы включают: аминокислоты, полипептиды, мочевину, креатинин, продукты распада нуклеиновых кислот и т.д. Половина остаточного азота приходится на долю мочевины. В норме остаточного азота в плазме содержится 10,6-14,1 ммоль/л (30-40 мг%), а мочевины - 2,5-3,3 ммоль/л (15-20 мг%). В плазме находятся также безазотистые органические вещества: глюкоза 4,44-6,67 ммоль/л (80-120 мг%), нейтральные жиры, липоиды. Минеральные вещества плазмы составляют около 1% (катионы Na+, К+, Са2+, анионы О", НС03",
В плазме содержится также более 50 различных гормонов и ферментов.
Осмотическое давление - это давление, которое оказывают растворенные в плазме вещества. Оно зависит от содержащихся в ней минеральных солей и составляет в среднем около 7,6 атм., что соответствует температуре замерзания крови, равной -0,56 - -0,58°С. Около 60% всего осмотического давления обусловлено солями натрия. Растворы, осмотическое давление которых такое же, как у плазмы, называются изотоническими, или изоосмотическими. Растворы с большим осмотическим давлением называются гипертоническими, а с меньшим - гипотоническими. 0,85-0,9% раствор NaCl называется физиологическим. Однако он не является полностью физиологическим, так как в нем нет других компонентов плазмы.
Онкотическое (коллоидно-осмотическое) давление - это часть осмотического давления, создаваемая белками плазмы (т.е. их способность притягивать и удерживать воду). Оно равно 0,03-0,04 атм. (25-30 мм рт.ст.), т.е. 1/200 осмотического давления плазмы (равного 7,6 атм.), и определяется более чем на 80% альбуминами. Постоянство осмотического и онкотического давления крови является жестким параметром гомеостаза, без которого невозможна нормальная жизнедеятельность организма.
Реакция крови (рН) является одной из важнейших констант гомеостаза, так как только при рН 7,36-7,42 возможно оптимальное течение обмена веществ. Крайними пределами изменения рН, совместимыми с жизнью, являются величины от 7 до 7,8. Сдвиг реакции крови в кислую сторону называется ацидозом, в щелочную - алкалозом. Поддержание постоянства реакции крови в пределах рН 7,36-7,42 (слабощелочная реакция) достигается за счет буферных систем крови:
Эритроцит - безъядерный форменный элемент крови, содержащий гемоглобин. Имеет форму двояковогнутого диска диаметром 7-8 мкм, толщиной 1-2,5 мкм. Они очень гибки и эластичны, легко деформируются и проходят через кровеносные капилляры с Диаметром меньшим, чем диаметр эритроцита. Образуются в красном костном мозге, разрушаются в печени и селезенке. Продолжительность жизни эритроцитов составляет 100-120 дней По мере созревания ядро замещается дыхательным пигментом - гемоглобином, составляющим 90% сухого вещества эритроцитов.
В норме в 1 мкл (мм3) крови у мужчин содержится 4-5 млн. эритроцитов, у женщин - 3,7-4,7 млн., у новорожденных достигает 6 млн. Увеличение количества эритроцитов в единице объема крови называется эрит-роцитозом, уменьшение - эритропенией. Общая площадь поверхности всех эритроцитов взрослого человека в 1500-1900 раз превышает поверхность тела.
Функции эритроцитов:
1)Дыхательная - за счет гемоглобина, присоединяющего к себе 02 и С02;
Питательная - адсорбирование на своей поверхности аминокислот и доставка их к клеткам организма;
Защитная - связывание токсинов находящимися на их поверхности антитоксинами и участие в свертывании крови;
Ферментативная - перенос различных ферментов: угольной ангид-разы (карбоангидразы), истинной холинэстеразы и др.;
Буферная - поддержание с помощью гемоглобина рН крови в пределах 7,36-7,42;
Креаторная - переносят вещества, осуществляющие межклеточные взаимодействия, обеспечивающие сохранность структуры органов и тканей. Например, при повреждении печени у животных эритроциты начинают транспортировать из костного мозга в печень нуклеотиды, пептиды, аминокислоты, восстанавливающие структуру этого органа.
По химической структуре гемоглобин является сложным белком -, состоящим из белка глобина и простетической группы гема (четырех молекул). Гем имеет в своем составе атом железа, способный присоединять и отдавать молекулу кислорода.
В крови у мужчин в норме содержится гемоглобина в среднем 14,5 г% (145 г/л) от 13 до у женщин - 13 г% (130 г/л) Общее количество гемоглобина в пяти литрах крови у человека составляет 700-800 г. 1 г гемоглобина связывает 1,34 мл кислорода. Разница в содержании эритроцитов и гемоглобина у мужчин и женщин объясняется стимулирующим действием на кроветворение мужских половых гормонов и тормозящим влиянием женских половых гормонов.. При разрушении эритроцитов гемоглобин превращается в желчный пигмент - билирубин. Последний с желчью поступает в кишечник, где превращается в стеркобилин и уробилин, выводимые с калом и мочой. За сутки разрушается около 8 г гемоглобина, т.е. около 1% гемоглобина, находящегося в крови.
В скелетных мышцах и миокарде находится мышечный гемоглобин, называемый миоглобином.. Миоглобин связывает до 14% общего количества кислорода в организме. Его назначение - снабжение кислородом работающей мышцы в момент сокращения, когда кровоток в ней уменьшается или прекращается.
В норме гемоглобин содержится в крови в виде трех физиологических соединений:
оксигемоглобин (НЮ2) - гемоглобин, присоединивший 02; находится в артериальной крови, придавая ей ярко-алый цвет;
, дезоксигемоглобин (НЬ) - оксигемоглобин, отдавший 02; находится в венозной крови, которая имеет более темный цвет, чем артериальная;
карбгемоглобин (НЬС02) - соединение гемоглобина с углекислым газом; содержится в венозной крови.
Гемоглобин способен образовывать и патологические соединения.
( 1) Карбоксигемоглобин (HbCO) - соединение гемоглобина с угарным газом (окисью углерода);
2) Метгемоглобин (MetHb) - соединение, в котором железо гема из двухвалентного превращается в трехвалентное. При накоплении в крови большого количества метгемоглобина транспорт кислорода тканям нарушается, и может наступить смерть.
Для определения в крови содержания гемоглобина используется ге-момер А.Сали,
Лейкоцит или белое кровяное тельце, - это бесцветная ядерная клетка, не содержащая гемоглобина. Размер лейкоцитов - 8-20 мкм. Образуются в красном костном мозге, лимфатических узлах, селезенке, лимфатических фолликулах. В 1 мкл (мм3) крови человека в норме содержится 4-9 тысяч лейкоцитов. Увеличение количества лейкоцитов в крови называется лейкоцитоз уменьшение – лейкопения. Продолжительность жизни лейкоцитов составляет в среднем 15-20 дней, лимфоцитов - 20 и более лет. Некоторые лимфоциты живут на протяжении всей жизни человека.
Лейкоциты делят на две группы: гранулоциты (зернистые) и агранулоциты (незернистые).. При оценке изменений числа лейкоцитов в клинике решающее значение придается изменениям взаимоотношений между различными видами клеток. Процентное соотношение отдельных форм лейкоцитов в крови называется лейкоцитарной формулой, или лейкограммой. В настоящее время она имеет следующий вид (табл.6).
У здоровых людей лейкограмма довольно постоянна, и ее изменения служат признаком различных заболеваний. Так, например, при острых воспалительных процессах наблюдается увеличение количества нейтрофилов (нейтрофилия), при аллергических заболеваниях и глистной болезни - эозинофилия, при вялотекущих хронических инфекциях (туберкулез, ревматизм и др.) - лимфоцитоз.
По нейтрофилам можно определить пол человека. При наличии женского генотипа 7 из 500 нейтрофилов содержат особые, специфические для женского пола образования, называемые "барабанными палочками».
Физиологические свойства лейкоцитов.:
амебовидная подвижность - способность активно передвигаться за счет образования ложноножек (псевдоподий);
диапедез - способность выходить (мигрировать) через неповрежденную стенку сосуда;
фагоцитоз - способность окружать инородные тела и микроорганизмы, захватывать их в цитоплазму, поглощать и переваривать.
Функции лейкоцитов: - б
защитная; они фагоцитируют (поглощают) чужеродные тела и уничтожают их;
антитоксическая - выработка антитоксинов,
выработка антител, обеспечивающих иммунитет,
участвуют в развитии всех этапов воспаления, стимулируют восстановительные (регенеративные) процессы в организме и ускоряют заживление ран;
ферментативная - они содержат различные ферменты, необходимые для осуществления фагоцитоза;
участвуют в процессах свертывания крови и фибринолиза путем выработки гепарина, гистамина, активатора плазминогена и т.д.;
являются центральным звеном иммунной системы организма, осуществляя функцию иммунного надзора ("цензуры"), защиты от всего чужеродного и сохраняя генетический гомеостаз (Т-лимфоциты);
обеспечивают реакцию отторжения трансплантата, уничтожение собственных мутантных клеток;
9.1.4. Тромбоцит), или кровяная пластинка, - участвующий в свертывании крови форменный элемент, необходимый для поддержания целостности сосудистой стенки. Представляет собой округлое или овальное безъядерное образование диаметром 2-5 мкм. Тромбоциты образуются в красном костном мозге. В 1 мкл (мм3) крови у человека содержится 180-320 тысяч тромбоцитов. Увеличение количества тромбоцитов в периферической крови называется тромбоцитозом, уменьшение -тромбоцитопенией. Продолжительность жизни тромбоцитов составляет 2-10 дней.
Основными физиологическими свойствами тромбоцитов являются:
амебовидная подвижность за счет образования ложноножек;
фагоцитоз, т.е. поглощение инородных тел и микробов;
прилипание к чужеродной поверхности и склеивание между собой;
выделение и поглощение различных биологически активных веществ типа серотонина, адреналина, норадреналина и др.;
содержат в себе много тромбо-цитарных факторов, участвующих в свертывании крови: тромбоцитарный тромбопластин, антигепариновый, свертывающий факторы, тромбостенин, фактор агрегации и т.д.
Функции тромбоцитов:
активно участвуют в процессе свертывания крови и растворения кровяного сгустка (фибринолиза);
участвуют в остановке кровотечения (гемостазе) за счет присутствующих в них биологически активных соединений;
выполняют защитную функцию за счет склеивания (агглютинации) микробов и фагоцитоза;
вырабатывают некоторые ферменты необходимые для нормальной жизнедеятельности тромбоцитов и для процесса остановки кровотечения;
оказывают влияние на состояние гистогематических барьеров между кровью и тканевой жидкостью путем изменения проницаемости стенок капилляров;
осуществляют транспорт креаторных веществ, важных для сохранения структуры сосудистой стенки; без взаимодействия с тромбоцитами эндотелий сосудов подвергается дистрофии и начинает пропускать через себя эритроциты.
.2. ГЕМОСТАЗ И ГРУППЫ КРОВИ.
ЦЕЛЬ: Знать физиологические механизмы гемолиза, скорости оседания эритроцитов, гемостаза (сосудисто-тромбоцитарного и коагуляцион-ного).
Уметь различать группы крови, понимать сущность резус-конфликта.
. Гемолиз (греч. haima - кровь, lysis - распад, растворение), , - это процесс внутрисосудистого распада эритроцитов и выхода из них гемоглобина в кровяную плазму, которая окрашивается при этом в красный цвет и становится прозрачной ("лаковая кровь
В зависимости от причины различают несколько видов гемолиза.
Осмотический гемолиз возникает при уменьшении осмотического давления при (концентрации NaCl, - 0,4% )
Химический гемолиз происходит под влиянием химических веществ, разрушающих белково-липидную оболочку эритроцитов (эфир, хлороформ, алкоголь, бензол, жёлчные кислоты и т.д.).
Механический гемолиз наблюдается при сильных механических воздействиях на кровь, например, при перевозке ампульной крови по плохой дороге, сильном встряхивании ампулы с кровью и т.д.
Термический гемолиз возникает при замораживании и размораживании ампульной крови, а также при нагревании ее до температуры 65-68°С.
Биологический гемолиз развивается при переливании несовместимой или недоброкачественной крови, при укусах ядовитых змей, скорпионов, под влиянием иммунных гемолизинов и др.
Скорость (реакция) оседания эритроцитов (сокращенно СОЭ, или РОЭ) - показатель, отражающий изменения физико-химических свойств крови и измеряемой величиной столба плазмы, освобождающейся от эритроцитов при их оседании из цитратной смеси (5% раствор цитрата натрия) за 1 час в специальной пипетке прибора Т.П.Панченкова.
В норме СОЭ равна:
у мужчин - 1-10 мм/час;
у женщин - 2-15 мм/час;
у новорожденных - 0,5 мм/час;
у беременных женщин перед родами - 40-50 мм/час.
Увеличение СОЭ больше указанных величин является, как правило, признаком патологии. Величина СОЭ зависит не от свойств эритроцитов, а от свойств плазмы - от содержания в ней белков - глобулинов и фибриногена. Концентрация этих белков возрастает при всех воспалительных процессах., Для определения СОЭ используется прибор Т.П.Панченкова, состоящий из штатива и градуированных стеклянных пипеток (капилляров).
Гемостаз (греч. haime - кровь, stasis - неподвижное состояние) - это остановка движения крови по кровеносному сосуду, т.е. остановка кровотечения. Различают 2 механизма остановки кровотечения:
сосудисто-тромбоцитарный (микроциркуляторный) гемостаз;
коагуляционный гемостаз (свертывание крови).
Первый механизм способен самостоятельно за несколько минут остановить кровотечение из наиболее часто травмируемых мелких сосудов с довольно низким кровяным давлением. Он слагается из двух процессов:
сосудистого спазма, приводящего к временной остановке или уменьшению кровотечения;
образования, уплотнения и сокращения тромбоцитарной пробки, приводящей к полной остановке кровотечения.
Второй механизм остановки кровотечения - свертывание крови (гемокоагуляция) обеспечивает прекращение кровопотери при повреждении крупных сосудов, в основном мышечного типа. Осуществляется в три фазы: I фаза - формирование протромбиназы и образование активного тромбопластина крови и ткани; II фаза - образование тромбина; III фаза - превращение фибриногена в фибрин. В механизме свертывания крови, , принимает участие 15 плазменных факторов: фибриноген, протромбин, тканевой тромбопластин, кальций и др.Большинство этих факторов образуется в печени при участии витамина К и является проферментами
Пусковым механизмом свертывания крови служит освобождение тромбопластина поврежденной тканью и распадающимися тромбоцитами. Для осуществления всех фаз процесса свертывания необходимы ионы кальция.
Сеть из волокон нерастворимого фибрина и опутанные ею эритроциты, лейкоциты и тромбоциты образуют кровяной сгусток Плазма крови, лишенная фибриногена и некоторых других веществ, участвующих в свертывании, называется сывороткой. А кровь, из которой удален фибрин, называется дефибринированной.
Время полного свертывания капиллярной крови в норме составляет 3-5 минут, венозной крови - 5-10 мин.
Кроме свертывающей системы, в организме имеются одновременно еще две системы: противосвертывающая и фибринолитическая. Противосвертывающая система препятствует процессам внутрисосудистого свертывания крови или замедляет гемокоагуляцию. Главным антикоагулянтом этой системы является гепарин. Гепарин тормозит все фазы процесса свертывания крови,.
Фибринолитическая система способна растворять образовавшийся фибрин и тромбы и является антиподом свертывающей системы. Главная функция фибринолиза - расщепление фибрина и восстановление просвета закупоренного сгустком
Нарушение функциональных взаимосвязей между свертывающей, противосвертывающей и фибринолитической системами может привести к тяжелым заболеваниям: повышенной кровоточивости, внутрисосудистому тромбообразованию и даже эмболии.
. Группы крови - совокупность признаков, характеризующих антигенную структуру эритроцитов и специфичность антиэритроцитарных антител, которые учитываются при подборе крови для трансфузий (лат. transfusio - переливание).
В 1901 г. австриец К. Ландштейнер и в 1903 г. чех Я. Янский обнаружили, что при смешивании крови разных людей часто наблюдается склеивание эритроцитов друг с другом - явление агглютинации (лат. agglutinatio - склеивание) с последующим их разрушением (гемолизом). Было установлено, что в эритроцитах имеются агглютиногены – АиВ ,. В плазме были найдены агглютинины –a и b - видоизмененные белки, антитела, склеивающие эритроциты. Агглютиногены А и В - эритроцитах, как и агглютинины a и b в плазме, у разных людей могут быть по одному или вместе, либо отсутствовать. Агглютиноген А и агглютинин а называются одноименными. Склеивание эритроцитов происходит в том случае, если эритроциты донора (человека, дающего кровь) встречаются с одноименными агглютининами реципиента (человека, получающего кровь), т.е. А + а, В + b или АВ + а b. Отсюда ясно, что в крови каждого человека находятся разноименные агглютиноген и агглютинин.
Согласно классификации Я. Янского и К. Ландштейнера у людей имеется 4 комбинации агглютиногенов и агглютининов, которые обозначаются следующим образом - допишите:
1(0) –
, 11(A) –
, Ш(В) –
IV(AB).
Исходя из этого, нетрудно представить, каким группам можно переливать кровь определенной группы (схема 24).
Как видно из схемы, людям I группы можно переливать кровь только этой группы. Кровь же I группы можно переливать людям всех групп. Поэтому они - универсальные доноры Людям с IV группой можно переливать кровь всех групп, поэтому – универсальные реципиенты.Кровь же IV группы можно переливать людям с кровью IV группы. Кровь людей II и III групп можно переливать людям с одноименной, а также с IV группой крови.
Однако в настоящее время в клинической практике переливают только одногруппную кровь, причем в небольших количествах (не более 500 мл), или переливают недостающие компоненты крови (компонентная терапия). Это связано с тем, что:
1) при больших массивных переливаниях разведения агглютининов донора не происходит, и они склеивают эритроциты реципиента;
2) при тщательном изучении людей с кровью I группы были обнаружены иммунные агглютинины анти-А и анти-В (у 10-20% людей); переливание такой крови людям с другими группами крови вызывает тяжелые осложнения. Поэтому людей с I группой крови, содержащих агглютинины анти-А и анти-В, сейчас называют опасными универсальными донорами;
в-третьих, в системе АВО выявлено много вариантов каждого агглютиногена
В 1930 г. К. Ландштейнер, выступая на церемонии вручения ему Нобелевской премии за открытие групп крови, предположил, что в будущем будут открыты новые агглютиногены, а количество групп крови будет расти до тех пор, пока не достигнет числа живущих на земле людей. Это предположение ученого оказалось верным. К настоящему времени в эритроцитах человека обнаружено более 500 различных агглютиногенов. Только из этих агглютиногенов можно составить более 400 млн. комбинаций, или групповых признаков крови. Если же учитывать и все остальные агглютиногены, встречающиеся в крови, то число комбинаций достигнет 700 млрд., т.е. значительно больше, чем людей на земном шаре. Это определяет удивительную антигенную неповторимость, и в этом смысле каждый человек имеет свою группу крови. Данные системы агглютиногенов отличаются от системы АВО
Для определения групп крови нужно иметь стандартные сыворотки, содержащие известные агглютинины. Если смешать каплю крови человека, группу которого надо определить, с сывороткой I, II, III групп, то по наступившей агглютинации можно определить его группу.
Несмотря на простоту метода в 7-10% случаев группа крови определяется неверно, и больным вводят несовместимую кровь. Для избежания такого осложнения перед переливанием крови обязательно проводят:
определение группы крови донора и реципиента;
резус-принадлежность крови донора и реципиента;
пробу на индивидуальную совместимость;
4) биологическую пробу на совместимость в процессе переливания: вливают вначале 10-15 мл донорской крови и затем в течение 3-5 минут наблюдают за состоянием больного.
Перелитая кровь всегда действует многосторонне. В клинической практике выделяют:
заместительное действие - замещение потерянной крови;
иммуностимулирующее действие - с целью стимуляции защитных сил;
кровоостанавливающее (гемостатическое) действие - с целью остановки кровотечения, особенно внутреннего;
обезвреживающее (дезинтоксикационное) действие - с целью уменьшения интоксикации;
5) питательное действие - введение белков, жиров, углеводов в легкоусвояемом виде.
Резус-фактор. Впервые он был найден в 1940 г. К. Ландштейнером и И. Винером в крови обезьяны макаки-резуса. У 85% людей в крови имеется этот же резус-агглютиноген. Такая кровь называется резус-положительной. Кровь, в которой отсутствует резус-агглютиноген, называется резус-отрицательной (у 15% . Особенностью резус-фактора является то, что у людей отсутствуют антирезус-агглютинины поэтому, если человеку с резус-отрицательной кровью повторно переливать резус-положительную кровь, то под влиянием введенного резус-агглютиногена в крови вырабатываются специфические антирезус-агглютинины и гемолизины. В этом случае переливание резус-положительной крови этому человеку может вызвать агглютинацию и гемолиз эритроцитов - возникнет гемотрансфузи-онный шок.
Резус-фактор передается по наследству и имеет особое значение для течения беременности. Например, если у матери отсутствует резус-фактор, а у отца он есть (вероятность такого брака составляет 50%), то плод может унаследовать от отца резус-фактор и оказаться резус-положительным. Кровь плода проникает в организм матери, вызывая образование в ее крови антирезус-агглютининов. Если эти антитела поступят через плаценту обратно в кровь плода, произойдет агглютинация. При высокой концентрации антирезус-агглютининов может наступить смерть плода и выкидыш. При легких формах резус-несовместимости плод рождается живым, но с гемолитической желтухой.
При повторной беременности резус-отрицательной женщины резус-положительным плодом угроза резус-конфликта нарастает.
Решите задачи и ответьте на вопросы.
1.Можно ли перелить 1группу крови резус-фактор отрицательный человеку с 4 группой крови резус-фактор положительный? Объяснить.
2Можно ли перелить 3группу крови человеку с 4 группой крови?. Объяснить.
3.Что такое резус-фактор?
4Кто называется опасным универсальным донором?
5Что такое реакция агглютинации?
6)Сколько крови находится в кровеносной системе человека?
7)Сколько эритроцитов у женщин и у мужчин?
8)Что такое диапедез?
9)Что называется осмотическим гемолизом?
10)Что называется гемостазом?
Лекция №17. ИММУНИТЕТ И ЕГО МЕХАНИЗМЫ. АЛЛЕРГИЯ И АНАФИЛАКСИЯ.
ЦЕЛЬ: Представлять значение иммунологической реактивности, виды, механизмы иммунитета, аллергию и анафилаксию, что необходимо для понимания иммунологической защиты организма от генетически чужеродных тел и веществ, а также при проведении прививок против инфекционных заболеваний, введении сывороток с профилактической и лечебной целями.
. Иммунология - это наука о молекулярных и клеточных механизмах иммунного ответа и его роли при различных патологических состояниях организма. Иммунологическая реактивность - свойство живой системы отвечать (реагировать) на воздействия различных факторов внешней и внутренней среды. Понятие включает в себя 4 взаимосвязанных явления:
1) невосприимчивость к заразным болезням, или иммунитет в собсвенном смысле слова;
2) реакции биологической несовместимости тканей;
3) реакции повышенной чувствительности (аллергию и анафилаксию);
4) явления привыкания к ядам различного происхождения.
Все эти явления объединяют следующие признаки:
все они возникают в организме при попадании в него чужеродных живых существ (микробов, вирусов) или болезненно измененных тканей, различных антигенов, токсинов и т.д.
эти явления и реакции являются по существу реакциями биологической защиты, направленной на сохранение и поддержание постоянства, устойчивости, состава и свойств каждого отдельного целостного организма;
в механизме подавляющего большинства самих реакций существенное значение имеют процессы взаимодействия антигенов с антителами.
Антигены (греч. anti - против, genos - род, происхождение) - чуждые для организма вещества, вызывающие образование антител в крови и других тканях. Антитела - белки группы иммуноглобулинов, образующиеся в организме при попадании в него некоторых веществ (антигенов) и нейтрализующие их вредное действие.
Иммунологическая толерантность (лат. tolerantia - терпение) - полное или частичное отсутствие иммунологической реактивности, т.е. потеря (или снижение) организмом способности к выработке антител или иммунных лимфоцитов в ответ на антигенное раздражение. Она может быть физиологической, патологический и искусственной (лечебной). Физиологическая проявляется переносимостью иммунной системой белков собственного организма. В основе такой толерантности лежит "запоминание" клетками иммунной системы белкового состава своего организма. Примером патологической иммунологической толерантности является переносимость опухоли организмом. В этом случае иммунная система слабо реагирует на чужеродные по белковому составу раковые клетки, с чем может быть связан не только рост опухоли, но и ее возникновение. Искусственная (лечебная) иммунологическая толерантность воспроизводится с помощью воздействий, снижающих активность органов иммунной системы, например, введением иммунодепрессантов, ионизирующим излучением и др. Ослабление активности иммунной системы обеспечивает переносимость организмом пересаженных органов и тканей (сердца, почки, кожи и других трансплантатов).
Явление иммунитета известно уже несколько сот лет. Люди давно заметили, что человек, переболевший какой-либо эпидемической болезнью, очень редко заболевает ею повторно: он становится невосприимчивым к данной болезни. В 1796 г. английский врач Э. Дженнер (1749-1823) обратил внимание на то, что работники ферм, имевшие дело с коровами, больными коровьей оспой, никогда не заболевали натуральной оспой. Когда он попробовал втереть немного жидкости, взятой из оспенных пустул на коровьем вымени, в царапину на коже, человек заболел оспой в легкой форме, причем у него появилась лишь одна оспина на месте втирания. Вакцинированные (лат. vaccinus - коровий) таким способом люди никогда не заболевали оспой.. Позже, в конце XIX века, Л. Пастер (1822-1895) нашел способы ослабления вирулентности микробов, чтобы воспроизводить легкое заболевание, оставляющее после себя иммунитет. Ослабленные культуры микробов Л. Пастер назвал в честь Э. Дженнера вакцинами. А затем этот термин был распространен на все те агенты, которые способны вызвать иммунитет. И.И. Мечников (1845-1916) - создатель учения о фагоцитозе, развил теорию иммунитета.
Иммунитет (лат. immunitas - освобождение от чего-либо, избавление) - это невосприимчивость организма по отношению к возбудителям болезней или определенным ядам. В настоящее время доказано, что иммунные реакции направлены не только против возбудителей болезней и их ядов (токсинов), но и против всего чужеродного: чужих клеток и тканей, генетически изменившихся в результате мутации собственных клеток, в том числе и раковых. Установлено также, что в каждом организме существует иммунологический надзор, обеспечивающий распознавание "своего" и "чужого" и уничтожение "чужого". Поэтому теперь под иммунитетом понимают не только невосприимчивость к заразным болезням, но и способ защиты организма от живых существ и веществ, несущих признаки чужеродное Иммунитет - это способность организма защищаться от генетически чужеродных тел и веществ.
По происхождению различают врожденный (видовой) и приобретенный иммунитет.
Врожденный (видовой) иммунитет является наследственным признаком для данного вида животных. По прочности или стойкости его разделяют на абсолютный и относительный. Абсолютный иммунитет является очень прочным: никакие воздействия внешней среды не ослабляют иммунитет. Например, у собак и кроликов не удается вызвать заболевание полиомиелитом при их охлаждении, голодании, травме и т.д. Относительный видовой иммунитет является в отличие от абсолютного менее прочным, зависящим от воздействия внешней среды. Например, птицы (куры, голуби) в обычных условиях невосприимчивы к сибирской язве, но если ослабить их путем охлаждения или голодания, то они заболевают сибирской язвой.
Приобретенный иммунитет приобретается в процессе жизни и делится на естественно приобретенный и искусственно приобретенный. Каждый из них по способу возникновения разделяется на активный и пассивный.
Естественно приобретенный активный иммунитет возникает после перенесения соответствующего инфекционного заболевания. Естественно приобретенный пассивный иммунитет (врожденный, или плацентарный, иммунитет) обусловлен переходом защитных антител из крови матери через плаценту в кровь плода. Защитные антитела вырабатываются в организме матери, плод же получает их готовыми. Таким путем получают иммунитет новорожденные дети по отношению к кори, скарлатине, дифтерии и другим инфекциям. Через 1-2 года, когда антитела, полученные от матери, разрушаются и выделяются из организма ребенка, восприимчивость его к указанным инфекциям резко возрастает. Пассивным путем иммунитет в меньшей степени может передаваться и с молоком матери. Искусственно приобретенный иммунитет воспроизводится человеком в целях предупреждения заразных болезней. Активный искусственный иммунитет достигается путем прививки здоровым людям культур убитых или ослабленных патогенных микробов, ослабленных токсинов (анатоксинов) или вирусов. (вакцинация) Пассивный искусственный иммунитет воспроизводится путем введения человеку сыворотки, содержащей антитела пробив микробов и их токсинов. Особенно эффективны антитоксические сыворотки против дифтерии, столбняка, ботулизма, газовой гангрены. Применяют также сыворотки против змеиных ядов (кобра, гадюка и др.). Эти сыворотки получают главным образом от лошадей, которых иммунизируют соответствующим токсином.
По направленности действия различают антитоксический, антимикробный и противовирусный иммунитет. Антитоксический иммунитет направлен на нейтрализацию микробных ядов. Антимикробный (антибактериальный) иммунитет направлен на уничтожение самих микробных тел. Противовирусный иммунитет проявляется образованием в лимфоцитах особого белка - интерферона, подавляющего размножение вирусов.
Механизмы иммунитета делятся на неспецифические, т.е. общие защитные приспособления, и специфические иммунные механизмы. Неспецифические механизмы препятствуют проникновению микробов и чужеродных веществ в организм, специфические иммунные механизмы начинают работать тогда, когда в организме появляются чужеродные антигены.
Механизмы неспецифического иммунитета включают ряд защитных барьеров и приспособлений.
Неповрежденная кожа, слизистые оболочки (реснички) для механического удаления 2)Уничтожение с помощью естественных жидкостей (слюна, слезы, желудочный сок - соляная кислота и т.д.).
3)Бактериальная флора в толстом кишечнике, слизистой оболочке полости носа, рта, половых органов, является антагонистом многих патогенных микробов.
;4)Гематоэнцефалический барьер (эндотелий капилляров головного мозга и сосудистых сплетений его желудочков) защищает ЦНС от попадания в нее инфекции.
5)Фиксация микробов в тканях и уничтожение их фагоцитами.
Очаг воспаления в месте проникновения микробов( кожа слизистая) играет роль защитного барьера.
Интерферон – неспецифическое вещество, которое угнетает внутриклеточное размножение вируса. Вырабатывается различными клетками организма.
Специфический иммунный механизм иммунитета включает 3 связанных между собой компонента: А-, В- и Т-системы.
А-система - сигнальная система (образуется в костном мозге. Присутствует в крови, тканях), воспринимает и отличает чужеродные белки от собственных белков. Моноциты поглощают антиген, накапливают его и передают сигнал исполнительным клеткам иммунной системы.
2)В-система - исполнительная часть иммунной системы – освобождает организм от бактерий, вирусов и их токсинов. В-лимфоциты,(находятся в лимфатических узлах, пейеровых бляшках, в периферической крови) после получения антигенного стимула от моноцитов, превращаются в плазматические клетки, которые синтезируют антитела - иммуноглобулины. В-система обеспечивает развитие гуморального иммунитета.
Т-система включает Т-лимфоциты, т.к созревают в вилочковой железе – тимусе. После получения антигенного стимула Т-лимфоциты превращаются в лимфобласты, которые усиленно размножаются и созревают. В результате образуются иммунные Т-лимфоциты, способные распознавать антиген и взаимодействовать с ним. Различают 3 вида Т-лимфоцитов:.
Т-хелперы (помощники) помогают В-лимфоцитам, повышая активность.
Т-супрессоры (угнетатели) понижают активность В-лимфоцитов.
Т-киллеры (убийцы) взаимодействуют с чужеродными клетками и уничтожают их.
Т-система обеспечивает клеточный иммунитет и реакции отторжения трансплантата
Аллергия (греч. alios - другой, ergon - действие) - измененная (извращенная) реактивность организма к повторным воздействиям каких-либо веществ или к компонентам собственных тканей. В основе аллергии лежит иммунный ответ, протекающий с повреждением ткани.
При первоначальном внедрении в организм антигена, называемого аллергеном, заметных изменений не происходит, но накапливаются антитела или иммунные лимфоциты к этому аллергену. На фоне высокой концентрации антител, повторно введенный тот же аллерген вызывает - выраженные расстройства а иногда и гибель организма. При аллергии иммунная система активно вырабатывает антитела, которые взаимодействуют с аллергеном. Результатом такого взаимодействия является повреждение на всех уровнях организации: клеточном, тканевом, органном.
Кроме экзоаллергенов- пыльца, шерсть и т.д., проникающих в организм извне различными путями (через дыхательные пути, через рот, кожу, слизистые оболочки, путем инъекций), в больном организме образуются эндоаллергены (аутоаллергены) из его собственных белков под влиянием различных повреждающих факторов. Эти эндоаллергены становятся причиной многообразных аутоаллергических болезней человека. Согласно принятой в настоящее время классификации все аллергические реакции разделяют на две большие группы:
1) аллергические реакции замедленного типа (гиперчувствительность замедленного типа);