- •1. Законы геометрической оптики. Показатель преломления и его физический смысл.
- •2. Оптическая длина пути. Таутохронизм. Формула линзы
- •3. Принципы построения изображений в линзах.
- •4. Световой поток. Освещённость. Закон освещённости.
- •5. Волновое движение. Уравнение волны. Стоячие волны
- •6. Интерференция волн. Когерентность. Условия возникновения интерференционных минимумов и максимумов.
- •7. Расчет интерференционной картины от двух источников. Ширина интерференционных полос(????)
- •8. Интерференция света. Оптическая разность хода. Методы получения когерентных световых волн.
- •9. Интерференция на тонких пленках. Интерференционная окраска. Полосы равной толщины и равного наклона.
- •10. Дифракция Френеля. Метод зон Френеля. Дифракция на круглых отверстиях и экранах.
- •11. Дифракция Фраунгофера на узкой щели.
- •12. Дифракционная решетка.
- •13. Поляризованный и естественный свет. Поляризация при отражении и преломлении.
- •14. Поляризация при двойном лучепреломлении. Обыкновенный и необыкновенный лучи.
- •15. Понятие о вращении плоскости поляризации.
- •16. Тепловое излучение и его характеристики. Законы Стефана-Больцмана и Вина
- •17. Формула Рэлея-Джинса. Ультрафиолетовая катастрофа.
- •18. Гипотеза и формула Планка. Корпускулярно-волновой дуализм света.
- •19. Фотоэлектрический эффект. Законы фотоэффекта. Формула Эйнштейна.
- •20. Невозможность поглощения света свободными электронами. Эффект Комптона.
- •21. Модель атома Томсона. Опыты Резерфорда. Планетарная модель атома.
- •22. Постулаты Бора. Атом водорода в теории Бора.
- •23. Сериальные закономерности в спектре излучения атомов водорода и их объяснение в теории Бора.(????)
- •24. Гипотеза и формула де Бройля. Корпускулярно-волновой дуализм материи.
- •25. Соотношение неопределенностей Гэйзенберга.
- •26. Уравнение Шредингера. Волновая функция, ее физический смысл. Постановка задачи в квантовой механике.
- •27. Микрочастица в прямоугольной потенциальной яме.
- •28. Атом водорода в квантовой механике.
- •29. Составные части ядра. Энергия связи нуклонов. Ядерные силы.
- •30. Естественная радиоактивность. Α-, β- распад, γ-излучение. Их характеристика.
- •31. Основной закон радиоактивного распада.
- •32. Ядерные реакции. Тепловой эффект ядерной реакции.
17. Формула Рэлея-Джинса. Ультрафиолетовая катастрофа.
Закон
Рэлея-Джинса —
закон излучения Рэлея-Джинса
для равновесной плотности
излучения абсолютно чёрного тела
и
для испускательной способности абсолютно
чёрного тела
который
получили Рэлей и Джинс, в рамках
классической статистики (теорема о
равнораспределении энергии по степеням
свободы и представление об электромагнитном
поле как о бесконечномерной динамической
системе).
Правильно описывал низкочастотную часть спектра, при средних частотах приводил к резкому расхождению с экспериментом, а при высоких — к абсурдному результату , означавшему неудовлетворительность классической физики.
Основываясь на законе о равнораспределении энергии по степеням свободы: на каждое электромагнитное колебание приходится в среднем энергия, складываемая из двух частей kT. Одну половинку вносит электрическая составляющая волны, а вторую — магнитная. Само по себе, равновесное излучение в полости, можно представить как систему стоячих волн. Количество стоячих волн в трехмерном пространстве дается выражением:
.
В нашем случае скорость следует положить равной , более того, в одном направлении могут двигаться две электромагнитные волны с одной частотой, но со взаимно перпендикулярными поляризациями, тогда (1) в добавок следует помножить на два:
.
Релей
и Джинс каждому колебанию приписали
энергию
.
Помножив (2) на
,получим
плотность энергии, которая приходится
на интервал частот
:
,
тогда:
.
Зная
связь испускательной способности
абсолютно черного тела
с
равновесной плотностью энергии теплового
излучения
,
для
находим:
Выражения (3) и (4), называют формулой Релея-Джинса
Ультрафиоле́товая катастро́фа — физический термин, описывающий парадокс классической физики, состоящий в том, что полная мощность теплового излучения любого нагретого тела должна быть бесконечной. Название парадокс получил из-за того, что спектральная плотность энергии излучения должна была неограниченно расти по мере сокращения длины волны.
По сути этот парадокс показал если не внутреннюю противоречивость классической физики, то во всяком случае крайне резкое (абсурдное) расхождение с элементарными наблюдениями и экспериментом.
Так как это не согласуется с экспериментальным наблюдением, в конце XIX века возникали трудности в описании фотометрических характеристик тел.
Проблема была решена при помощи квантовой теории излучения Макса Планка в 1900 году.
18. Гипотеза и формула Планка. Корпускулярно-волновой дуализм света.
Гипо́теза
Пла́нка — гипотеза,
выдвинутая 14 декабря 1900 года Максом
Планком и заключающаяся в том, что
при тепловом излучении энергия испускается
и поглощается не непрерывно, а
отдельными квантами (порциями).
Каждая такая порция-квант имеет
энергию
,
пропорциональную частоте ν излучения:
где h или
—
коэффициент пропорциональности,
названный впоследствии постоянной
Планка. На основе этой гипотезы он
предложил теоретический вывод соотношения
между температурой тела и
испускаемым этим телом излучением — формулу
Планка.
Позднее гипотеза Планка была подтверждена экспериментально.
Выдвижение этой гипотезы считается моментом рождения квантовой механики.
Корпускуля́рно-волново́й дуали́зм (или Ква́нтово-волново́й дуали́зм) — принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепция квантованных полей в квантовой теории поля.
