- •1.Адаптивные методы краткосрочного прогнозирования: метод Брауна.
- •2.Адаптивные методы среднесрочного прогнозирования модификация метода стохастической аппроксимации
- •3.Адаптивные методы среднесрочного прогнозирования: методы дисконтирования.
- •4.Адресация в сети Internet. Службы Internet.
- •5.Анализ барьеров входа-выхода
- •6.Вероятностная модель рынка с тремя состояниями.
- •7.Внутренняя норма доходности irr инвестиционного проекта
- •8.Восемь этапов проведения организационных изменений (Джон Коттер)
- •9.Генерация и удаление транзактов. Имитация обслуживания.
- •10.Графический метод решения антагонистической игры.
- •11.Графический метод решения задач линейного программирования
- •12.Двойственные задачи линейного программирования.
- •13.Дискретные функции. Непрерывные функции.
- •14.Дискриминантный анализ.
- •15.Задачи имитационного моделирования и принципы построения. Общий вид задачи имитационного моделирования.
- •2. Подготовка исходных данных
- •3. Выбор средств моделирования
- •4. Разработка программы модели
- •5. Проверка адекватности и корректировка модели
- •16.Имитация многоканальных устройств. Смешанная модель.
- •17.Инвестиционные проекты и их финансовые потоки. Основные оценки эффективности инвестиционного проекта.
- •18.Индекс доходности pi инвестиционного проекта.
- •19.Квазимонопольное поведение фирмы на рынке
- •20.Классификация информационных систем. Модели данных.
- •1.Реляционная модель данных или отношение "один к одному" (1:1).
- •2.Иерархическая модель данных или отношение "один ко многим" (1:n).
- •3.Сетевая модель данных или отношение "многие ко многим" (m:n).
- •21.Классификация средств информационных технологий по функциональному признаку. Case средства в информационных технологиях.
- •22.Классификация экспертных систем.
- •23.Кластерный анализ.
- •24.Максимин, минимакс и связывающее их неравенство.
- •25.Метод главных компонент.
- •26.Метод канонических корреляций.
- •27.Методология исследования отраслевых рынков.
- •28.Методы выбора управленческих решений с использованием моделей нелинейного программирования
- •29.Методы выделения тренда. Оценивание параметров трендовых моделей.
- •30.Множественный корреляционный анализ.
- •31.Множественный регрессионный анализ.
- •32.Модели авторегрессии.
- •33.Модели и алгоритмы дискретного программирования при управлении экономикой
- •34.Моделирование одноканальных систем массового обслуживания. Структура модели. Понятие транзакта.
- •35.Моделирование случайных чисел с равномерным распределением. Формирование случайных чисел с заданным законом распределения.
- •Метод аналитического преобразования случайных величин
- •Нормальное распределение.
- •Метод табличного преобразования случайных величин
- •36.Модель 4 сфер влияния: барьеры на пути перемен и стратегии их преодоления.
- •37.Модель делового цикла Самуэльсона-Хикса.
- •38.Модель динамического мультипликатора Кейнса.
- •39.Модель классического проведения организационных изменений.
- •40.Модель обзора четырех сфер влияния.
- •41.Модель перекрывающихся контрактов.
- •42.Модель перекрывающихся поколений: случай производственной функции типа Кобба-Дугласа и логарифмических предпочтений.
- •43.Модель управления запасами. Классификация затрат и формулы Уилсона
- •44.Неоклассическая модель экономического роста Солоу-Свэна.
- •45.Одноканальная модель с приоритетами. Одноканальная модель с различными типами транзактов.
- •46.Олигополия. Стратегическое взаимодействие фирм на рынке.
- •47.Оптимальный выбор решений на моделях линейного программирования
- •48.Основные задачи манипулирования данными в ходе управленческой деятельности.
- •49.Основные принципы поиска информации в Internet. Поисковые ресурсы Internet. Бизнес и Internet.
- •50.Основные формы представления данных в информационных технологиях.
- •51.Основные характеристики системы обслуживания с ожиданием
- •52. Основные характеристики системы обслуживания с отказом
- •53.Оценка монопольной власти фирм на рынке.
- •55.Оценка потерь общества от монополии.
- •56.Ошибки, часто совершаемые при проведении орг изменений на восьми этапах Коттера.
- •57.Парадигма «Структура – поведение - результат» и ее роль в исследовании отраслевых рынков.
- •58.Понятие антагонистической игры. Решение антагонистической игры.
- •59.Понятие седловой точки игры. Теорема о седловой точке.
- •60.Постановка задач оптимального выбора управленческих решений на статических моделях
- •61.Потоки платежей. Дисконтирование и приведенная стоимость потока. Устойчивость оценки приведенной стоимости потока.
- •62. Потоки требований и их характеристики.
- •63.Представление регулярно структурированных данных в текстовых формах.
- •64.Принципы построения и анализа имитационных моделей. Основные и вспомогательные события. Завершение моделирования. Таймер модельного времени.
- •65.Проверка гипотез о значениях параметров многомерной случайной величины.
- •66.Простые и сложные процентные ставки. Основные свойства и формулы.
- •67. Процедура «Поиск решения» и её применение для решения оптимизационных задач
- •68. Пуассоновский поток требований и его характеристики.
- •69.Регистраторы очередей. Передача транзактов
- •70.Реинжиниринг бизнес процессов на примере компании Kodak.
- •71.Сети эвм. Основные понятия. Классификация. Протоколы сети Internet.
- •72.Системы управления базами данных (субд). Структура субд.
- •73.Сравнительный анализ основных типов рыночных структур: совершенной конкуренции, монополии, монополистической конкуренции, олигополии. Индексы концентрации.
- •74.Средства и задачи формальной обработки данных.
- •75.Средства создания и сопровождения информационных систем.
- •76.Стационарные траектории и стационарные состояния динамической системы. Понятие устойчивости стационарного состояния.
- •77.Структура гипертекстового документа. Цвет и инструкции заголовка гипертекстового документа. Гиперссылки и форматирование гипертекстового документа. Пример простейшего сайта.
- •78.Структура процессов информационных технологий.
- •79.Структура ресурсов информационных технологий.
- •80.Структура средств информационных технологий.
- •81.Существование решения антагонистической игры в смешанных стратегиях.
- •82.Таймер модельного времени. Представление результатов моделирования.
- •83.Теневые цены (двойственные оценки) в задачах линейного программирования
- •84. Теоремы двойственности в линейном программировании
- •85. Технология разработки математических моделей оптимального управления экономикой
- •86.Точечные и интервальные оценки многомерных статистик.
- •87.Факторный анализ.
- •88.Финансовые ренты. Основные понятия и формулы.
- •89.Формирование видения компании: базовая идеология.
- •90.Характеристика симплекс-метода.
- •91.Ценовая дискриминация и ценовая политика фирмы на товарном рынке.
- •92.Чистый приведенный доход npv инвестиционного проекта.
- •93.Эконометрическое моделирование отраслевой функции затрат.
65.Проверка гипотез о значениях параметров многомерной случайной величины.
СТАТИСТИЧЕСКОЙ ГИПОТЕЗОЙ называют некоторое утверждение относительно значения (или значений) какого-либо параметра случайной величины. Например, утверждение: Mx=5 (гипотеза о равенстве МО пяти) или утверждение: Dx=Dy (гипотеза о равенстве двух дисперсий). Под процедурой проверки статистических гипотез понимают последовательность действий, позволяющих с той или иной степенью достоверности подтвердить или опровергнуть утверждение гипотезы. Все статистические выводы являются следствием проверки одной или комплекса гипотез.
В основе проверки любой гипотезы лежит ПРИНЦИП ПРАКТИЧЕСКОЙ НЕВОЗМОЖНОСТИ
Этот принцип гласит: СОБЫТИЯ С МАЛЫМИ ВЕРОЯТНОСТЯМИ ПРАКТИЧЕСКИ НЕВОЗМОЖНЫ.
УРОВНЕМ ЗНАЧИМОСТИ называется максимальное значение вероятности, при котором событие можно считать еще практически невозможным. Уровень значимости обозначается греческой буквой α. В практике статистических вычислений приняты следующие стандартные значения α: 0,05, 0,02 и 0,01 (5%, 2% и 1% ).
Событие, вероятность которого превышает α называется ЗНАЧИМЫМ, а событие, вероятность которого не превышает α называется НЕЗНАЧИМЫМ.
При проверке статистической гипотезы исследователь сам назначает уровень значимости. Суть проверки гипотезы сводится к следующему. Исследователь предполагает, что гипотеза верна. Исходя из этого, исследователь делит будущие результаты на две группы. Первая группа - результаты, вероятность получить которые, при справедливости гипотезы превосходит α. Вторая - результаты, вероятность получить которые, не превосходит α. Затем извлекается выборка (или реализуется эксперимент) и определяется к какой группе относится результат. Если результат относится к первой группе, то нет оснований отвергать гипотезу (это вполне вероятный результат). Если результат принадлежит второй группе, то есть основания для отвержения гипотезы (это маловероятный результат).
Рассмотрим процедуру проверки статистической гипотезы для значений параметра нормально распределенного k-мерного случайного вектора. В качестве примера используем проверку гипотезы о равенстве математического ожидания µ случайного вектора X некоторому вектору µ0. Ковариационная матрица COV вектора X должна удовлетворять условию |COV| ≠ 0.
Если имеется выборка объема n из генеральной совокупности векторов X, то статистика Хотеллинга T2 = n*(x - µ0)т*(C-1)*(x - µ0) при заданной доверительной вероятности P соответствует значению [k*(n - 1)/(n - k)]*F1-P. Здесь x - оценка математического ожидания вектора X, C-1 - обратная матрица оценок ковариаций. Отсюда следует, что при заданном уровне значимости α критическое значение T2кр будет соответствовать = [k*(n - 1)/(n*(n - k))]*Fα при числах степеней свободы числителя ν1 = k и знаменателя ν2 = n - k. Поэтому, если расчетное по результатам выборки T2расч превосходит T2кр , то данные противоречат гипотезе, если нет, то данные не противоречат гипотезе.
