- •1.Адаптивные методы краткосрочного прогнозирования: метод Брауна.
- •2.Адаптивные методы среднесрочного прогнозирования модификация метода стохастической аппроксимации
- •3.Адаптивные методы среднесрочного прогнозирования: методы дисконтирования.
- •4.Адресация в сети Internet. Службы Internet.
- •5.Анализ барьеров входа-выхода
- •6.Вероятностная модель рынка с тремя состояниями.
- •7.Внутренняя норма доходности irr инвестиционного проекта
- •8.Восемь этапов проведения организационных изменений (Джон Коттер)
- •9.Генерация и удаление транзактов. Имитация обслуживания.
- •10.Графический метод решения антагонистической игры.
- •11.Графический метод решения задач линейного программирования
- •12.Двойственные задачи линейного программирования.
- •13.Дискретные функции. Непрерывные функции.
- •14.Дискриминантный анализ.
- •15.Задачи имитационного моделирования и принципы построения. Общий вид задачи имитационного моделирования.
- •2. Подготовка исходных данных
- •3. Выбор средств моделирования
- •4. Разработка программы модели
- •5. Проверка адекватности и корректировка модели
- •16.Имитация многоканальных устройств. Смешанная модель.
- •17.Инвестиционные проекты и их финансовые потоки. Основные оценки эффективности инвестиционного проекта.
- •18.Индекс доходности pi инвестиционного проекта.
- •19.Квазимонопольное поведение фирмы на рынке
- •20.Классификация информационных систем. Модели данных.
- •1.Реляционная модель данных или отношение "один к одному" (1:1).
- •2.Иерархическая модель данных или отношение "один ко многим" (1:n).
- •3.Сетевая модель данных или отношение "многие ко многим" (m:n).
- •21.Классификация средств информационных технологий по функциональному признаку. Case средства в информационных технологиях.
- •22.Классификация экспертных систем.
- •23.Кластерный анализ.
- •24.Максимин, минимакс и связывающее их неравенство.
- •25.Метод главных компонент.
- •26.Метод канонических корреляций.
- •27.Методология исследования отраслевых рынков.
- •28.Методы выбора управленческих решений с использованием моделей нелинейного программирования
- •29.Методы выделения тренда. Оценивание параметров трендовых моделей.
- •30.Множественный корреляционный анализ.
- •31.Множественный регрессионный анализ.
- •32.Модели авторегрессии.
- •33.Модели и алгоритмы дискретного программирования при управлении экономикой
- •34.Моделирование одноканальных систем массового обслуживания. Структура модели. Понятие транзакта.
- •35.Моделирование случайных чисел с равномерным распределением. Формирование случайных чисел с заданным законом распределения.
- •Метод аналитического преобразования случайных величин
- •Нормальное распределение.
- •Метод табличного преобразования случайных величин
- •36.Модель 4 сфер влияния: барьеры на пути перемен и стратегии их преодоления.
- •37.Модель делового цикла Самуэльсона-Хикса.
- •38.Модель динамического мультипликатора Кейнса.
- •39.Модель классического проведения организационных изменений.
- •40.Модель обзора четырех сфер влияния.
- •41.Модель перекрывающихся контрактов.
- •42.Модель перекрывающихся поколений: случай производственной функции типа Кобба-Дугласа и логарифмических предпочтений.
- •43.Модель управления запасами. Классификация затрат и формулы Уилсона
- •44.Неоклассическая модель экономического роста Солоу-Свэна.
- •45.Одноканальная модель с приоритетами. Одноканальная модель с различными типами транзактов.
- •46.Олигополия. Стратегическое взаимодействие фирм на рынке.
- •47.Оптимальный выбор решений на моделях линейного программирования
- •48.Основные задачи манипулирования данными в ходе управленческой деятельности.
- •49.Основные принципы поиска информации в Internet. Поисковые ресурсы Internet. Бизнес и Internet.
- •50.Основные формы представления данных в информационных технологиях.
- •51.Основные характеристики системы обслуживания с ожиданием
- •52. Основные характеристики системы обслуживания с отказом
- •53.Оценка монопольной власти фирм на рынке.
- •55.Оценка потерь общества от монополии.
- •56.Ошибки, часто совершаемые при проведении орг изменений на восьми этапах Коттера.
- •57.Парадигма «Структура – поведение - результат» и ее роль в исследовании отраслевых рынков.
- •58.Понятие антагонистической игры. Решение антагонистической игры.
- •59.Понятие седловой точки игры. Теорема о седловой точке.
- •60.Постановка задач оптимального выбора управленческих решений на статических моделях
- •61.Потоки платежей. Дисконтирование и приведенная стоимость потока. Устойчивость оценки приведенной стоимости потока.
- •62. Потоки требований и их характеристики.
- •63.Представление регулярно структурированных данных в текстовых формах.
- •64.Принципы построения и анализа имитационных моделей. Основные и вспомогательные события. Завершение моделирования. Таймер модельного времени.
- •65.Проверка гипотез о значениях параметров многомерной случайной величины.
- •66.Простые и сложные процентные ставки. Основные свойства и формулы.
- •67. Процедура «Поиск решения» и её применение для решения оптимизационных задач
- •68. Пуассоновский поток требований и его характеристики.
- •69.Регистраторы очередей. Передача транзактов
- •70.Реинжиниринг бизнес процессов на примере компании Kodak.
- •71.Сети эвм. Основные понятия. Классификация. Протоколы сети Internet.
- •72.Системы управления базами данных (субд). Структура субд.
- •73.Сравнительный анализ основных типов рыночных структур: совершенной конкуренции, монополии, монополистической конкуренции, олигополии. Индексы концентрации.
- •74.Средства и задачи формальной обработки данных.
- •75.Средства создания и сопровождения информационных систем.
- •76.Стационарные траектории и стационарные состояния динамической системы. Понятие устойчивости стационарного состояния.
- •77.Структура гипертекстового документа. Цвет и инструкции заголовка гипертекстового документа. Гиперссылки и форматирование гипертекстового документа. Пример простейшего сайта.
- •78.Структура процессов информационных технологий.
- •79.Структура ресурсов информационных технологий.
- •80.Структура средств информационных технологий.
- •81.Существование решения антагонистической игры в смешанных стратегиях.
- •82.Таймер модельного времени. Представление результатов моделирования.
- •83.Теневые цены (двойственные оценки) в задачах линейного программирования
- •84. Теоремы двойственности в линейном программировании
- •85. Технология разработки математических моделей оптимального управления экономикой
- •86.Точечные и интервальные оценки многомерных статистик.
- •87.Факторный анализ.
- •88.Финансовые ренты. Основные понятия и формулы.
- •89.Формирование видения компании: базовая идеология.
- •90.Характеристика симплекс-метода.
- •91.Ценовая дискриминация и ценовая политика фирмы на товарном рынке.
- •92.Чистый приведенный доход npv инвестиционного проекта.
- •93.Эконометрическое моделирование отраслевой функции затрат.
31.Множественный регрессионный анализ.
В множественном регрессионном анализе исследуется зависимость математического ожидания одной случайной величины от значений множества неслучайных величин.
В этом анализе совокупность наблюдений выходной случайной величины y можно представить в виде:
Y = X*B + E ,
где X - матрица n*k значений входных переменных
Y
- вектор-столбец n
значений выходной переменной
,
B
- вектор-столбец k
коэффициентов регрессии
,
E
- вектор-столбец n
значений приведенных к выходу возмущений
.
ПРЕДПОСЫЛКИ РЕГРЕССИОННОГО АНАЛИЗА:
1. В каждом наблюдении ei имеет нормальное распределение с нулевым МО и конечной дисперсией.
2. Для любого i дисперсия ei является величиной постоянной.
3. Для любого i не равного j COV(ei,ej)=0. Это в соответствии с пунктом 1 означает, что ei и ej должны быть независимыми случайными величинами.
Решение системы нормальных уравнений доставляющее оценки коэффициентов множественной регрессии имеет вид:
Bоц = ( Xт* X)-1*Xт*Y,
где Bоц - вектор-столбец МНК-оценок коэффициентов множественной регрессии
Xт - транспонированная матрица X ;
(Xт*X)-1 - матрица обратная матрице Xт* X.
Несмещенной оценкой дисперсии возмущений является величина:
S2e = (Y - X*Bоц)т*(Y - X*Bоц)/(n - k),
где k - число оцениваемых коэффициентов в уравнении регрессии.
ПОЛУЧИВ МНК-ОЦЕНКИ Bоц КОЭФФИЦИЕНТОВ УРАВНЕНИЯ РЕГРЕССИИ НЕОБХОДИМО ПРОВЕРИТЬ ДЛЯ КАЖДОЙ ОЦЕНКИ ГИПОТЕЗУ О РАВЕНСТВЕ НУЛЮ ИСТИННОГО ЗНАЧЕНИЯ: Ho:bj=0.
Проверка гипотезы осуществляется сравнением вычисленной T-статистики с критическим значением при заданном уровне значимости и числе степеней свободы(ЧСС) N-k:
Tj = |bj|*[n*(1 - R2j0)]1/2/Se
где Rj0 - коэффициент множественной корреляции j-той входной переменной с остальными.
Если Tj>Tкр, то данные противоречат гипотезе о равенстве нулю истинного значения коэффициента bj (КОЭФФИЦИЕНТ ЗНАЧИМ), если нет, то bj следует считать нулевым (КОЭФФИЦИЕНТ НЕЗНАЧИМ).
По результатам проверки гипотез о равенстве нулю истинных значений коэффициентов множественной регрессии, составляющие с незначимыми коэффициентами должны быть исключены из модели. При этом, в общем случае оценки коэффициентов, оставшиеся в модели должны быть пересчитаны! Это обусловлено коррелированностью входных переменных (матрица Xт*X - недиагональна). Только в случае отсутствия взаимной корреляции входных переменных (матрица Xт*X - диагональна) нет необходимости вновь вычислять оценки коэффициентов регрессии.
32.Модели авторегрессии.
Достаточно часто на практике встречаются стационарные процессы, каждое настоящее значение Yt которых определяется предыдущими, накопленными ранее значениями Yt-1, Yt-2 и т.д. То есть, имеет место взаимосвязь или корреляция между этими значениями. А поскольку коррелируют друг с другом значения одного и того же ряда, такое явление называют автокорреляция.
Для того чтобы определить насколько процесс является автокоррелированным, осуществляют расчет коэффициентов парной корреляции между значениями этого ряда и ими же, сдвинутыми на некоторый шаг назад. Такие коэффициенты называются автокорреляционными. Для их вычисления в формулу расчета коэффициента парной корреляции последовательно подставляют попарно сравниваемые значения показателя Y в момент t и показатели этого же процесса Y, но сдвинутые во времени на некоторый шаг τ, то есть Yt-τ:
Где
,
и
.
Таким образом, в качестве двух случайных переменных, между которыми выявляется корреляция, выступают исходный ряд значений Yt и ряд Yt-τ. Сам шаг τ изменяется от единицы до некоторого значения τМ. Поэтому в распоряжении прогнозиста находится некоторая зависимость коэффициента парной корреляции r от шага τ: r=f(τ). Эту зависимость называют автокорреляционной функцией. Наиболее наглядно свойства автокорреляции исходного ряда выявляются из графического анализа автокорреляционной функции. График зависимости значений коэффициента автокорреляции rτ от шага τ называют коррелограммой.
Анализ этого графика дает прогнозисту очень много ценной информации для выявления особенностей изучаемого процесса - периодичности некоторых явлений, их цикличности и сезонности, структура этой цикличности и т.п. Очевидно, что максимальные значения автокорреляционной функции могут изменяться в пределах от минус единицы до плюс единицы, а максимальное число сдвигов τМ не должно быть близким к числу наблюдений показателей τМ < Т.
Т
ипичный
график автокорреляционной функции:
Для большей наглядности на график коррелограммы наносят не только значения коэффициентов автокорреляции при соответствующих сдвигах τ, но ещё и соединяют близлежащие точки отрезками прямых линий. В результате получается некоторая ломаная линия, максимумы и минимумы которой и являются предметом особого изучения, ведь они характеризуют приближение зависимости между значениями ряда Yt и предыдущими значениями Yt-τ к линейной, причём, чем ближе величина коэффициента автокорреляции при каком-то шаге τ к 1, тем ближе к линейной зависимость между указанными значениями.
Если
при некотором сдвиге τ коэффициент
автокорреляции по модулю окажется не
менее чем 0,8, то говорят о наличии этой
зависимости, а сдвиг во времени τ,
соответствующий этому высокому значению
коэффициента, называют лагом. Если
автокорреляционная функция имеет
несколько лагов, то говорят о том, что
у этого ряда имеются распределённые
лаги. Впрочем, иногда о распределённых
лагах говорят, если показатель yt
находят в зависимости от другого фактора
xt.
Поскольку лаг означает наличие
зависимости значений самого ряда от
его же значений, но сдвинутых на величину
лага, то эту зависимость можно описать
математически. В общем случае модель
авторегрессии может описываться
следующей формулой:
Применительно
к графику автокорреляционной функции,
на котором выделяются два лага, равные
5 и 7 соответственно, можно говорить о
том, что модель авторегрессии будет
содержать две переменные - Yt-5
и Yt-7.
Поскольку при лаге, равном пяти,
коэффициент автокорреляции имеет
положительный знак, то коэффициент при
переменной Yt-5
будет положительным, а так как коэффициент
автокорреляции при лаге, равном семи,
имеет отрицательный знак, что
свидетельствует об обратной линейной
зависимости, то и коэффициент при
переменной Yt-7
будет отрицательным:
.
Для нахождения коэффициентов модели авторегрессии используются соответствующие разделы математической статистики, в большинстве случаев для этого используется МНК.
