- •1.Адаптивные методы краткосрочного прогнозирования: метод Брауна.
- •2.Адаптивные методы среднесрочного прогнозирования модификация метода стохастической аппроксимации
- •3.Адаптивные методы среднесрочного прогнозирования: методы дисконтирования.
- •4.Адресация в сети Internet. Службы Internet.
- •5.Анализ барьеров входа-выхода
- •6.Вероятностная модель рынка с тремя состояниями.
- •7.Внутренняя норма доходности irr инвестиционного проекта
- •8.Восемь этапов проведения организационных изменений (Джон Коттер)
- •9.Генерация и удаление транзактов. Имитация обслуживания.
- •10.Графический метод решения антагонистической игры.
- •11.Графический метод решения задач линейного программирования
- •12.Двойственные задачи линейного программирования.
- •13.Дискретные функции. Непрерывные функции.
- •14.Дискриминантный анализ.
- •15.Задачи имитационного моделирования и принципы построения. Общий вид задачи имитационного моделирования.
- •2. Подготовка исходных данных
- •3. Выбор средств моделирования
- •4. Разработка программы модели
- •5. Проверка адекватности и корректировка модели
- •16.Имитация многоканальных устройств. Смешанная модель.
- •17.Инвестиционные проекты и их финансовые потоки. Основные оценки эффективности инвестиционного проекта.
- •18.Индекс доходности pi инвестиционного проекта.
- •19.Квазимонопольное поведение фирмы на рынке
- •20.Классификация информационных систем. Модели данных.
- •1.Реляционная модель данных или отношение "один к одному" (1:1).
- •2.Иерархическая модель данных или отношение "один ко многим" (1:n).
- •3.Сетевая модель данных или отношение "многие ко многим" (m:n).
- •21.Классификация средств информационных технологий по функциональному признаку. Case средства в информационных технологиях.
- •22.Классификация экспертных систем.
- •23.Кластерный анализ.
- •24.Максимин, минимакс и связывающее их неравенство.
- •25.Метод главных компонент.
- •26.Метод канонических корреляций.
- •27.Методология исследования отраслевых рынков.
- •28.Методы выбора управленческих решений с использованием моделей нелинейного программирования
- •29.Методы выделения тренда. Оценивание параметров трендовых моделей.
- •30.Множественный корреляционный анализ.
- •31.Множественный регрессионный анализ.
- •32.Модели авторегрессии.
- •33.Модели и алгоритмы дискретного программирования при управлении экономикой
- •34.Моделирование одноканальных систем массового обслуживания. Структура модели. Понятие транзакта.
- •35.Моделирование случайных чисел с равномерным распределением. Формирование случайных чисел с заданным законом распределения.
- •Метод аналитического преобразования случайных величин
- •Нормальное распределение.
- •Метод табличного преобразования случайных величин
- •36.Модель 4 сфер влияния: барьеры на пути перемен и стратегии их преодоления.
- •37.Модель делового цикла Самуэльсона-Хикса.
- •38.Модель динамического мультипликатора Кейнса.
- •39.Модель классического проведения организационных изменений.
- •40.Модель обзора четырех сфер влияния.
- •41.Модель перекрывающихся контрактов.
- •42.Модель перекрывающихся поколений: случай производственной функции типа Кобба-Дугласа и логарифмических предпочтений.
- •43.Модель управления запасами. Классификация затрат и формулы Уилсона
- •44.Неоклассическая модель экономического роста Солоу-Свэна.
- •45.Одноканальная модель с приоритетами. Одноканальная модель с различными типами транзактов.
- •46.Олигополия. Стратегическое взаимодействие фирм на рынке.
- •47.Оптимальный выбор решений на моделях линейного программирования
- •48.Основные задачи манипулирования данными в ходе управленческой деятельности.
- •49.Основные принципы поиска информации в Internet. Поисковые ресурсы Internet. Бизнес и Internet.
- •50.Основные формы представления данных в информационных технологиях.
- •51.Основные характеристики системы обслуживания с ожиданием
- •52. Основные характеристики системы обслуживания с отказом
- •53.Оценка монопольной власти фирм на рынке.
- •55.Оценка потерь общества от монополии.
- •56.Ошибки, часто совершаемые при проведении орг изменений на восьми этапах Коттера.
- •57.Парадигма «Структура – поведение - результат» и ее роль в исследовании отраслевых рынков.
- •58.Понятие антагонистической игры. Решение антагонистической игры.
- •59.Понятие седловой точки игры. Теорема о седловой точке.
- •60.Постановка задач оптимального выбора управленческих решений на статических моделях
- •61.Потоки платежей. Дисконтирование и приведенная стоимость потока. Устойчивость оценки приведенной стоимости потока.
- •62. Потоки требований и их характеристики.
- •63.Представление регулярно структурированных данных в текстовых формах.
- •64.Принципы построения и анализа имитационных моделей. Основные и вспомогательные события. Завершение моделирования. Таймер модельного времени.
- •65.Проверка гипотез о значениях параметров многомерной случайной величины.
- •66.Простые и сложные процентные ставки. Основные свойства и формулы.
- •67. Процедура «Поиск решения» и её применение для решения оптимизационных задач
- •68. Пуассоновский поток требований и его характеристики.
- •69.Регистраторы очередей. Передача транзактов
- •70.Реинжиниринг бизнес процессов на примере компании Kodak.
- •71.Сети эвм. Основные понятия. Классификация. Протоколы сети Internet.
- •72.Системы управления базами данных (субд). Структура субд.
- •73.Сравнительный анализ основных типов рыночных структур: совершенной конкуренции, монополии, монополистической конкуренции, олигополии. Индексы концентрации.
- •74.Средства и задачи формальной обработки данных.
- •75.Средства создания и сопровождения информационных систем.
- •76.Стационарные траектории и стационарные состояния динамической системы. Понятие устойчивости стационарного состояния.
- •77.Структура гипертекстового документа. Цвет и инструкции заголовка гипертекстового документа. Гиперссылки и форматирование гипертекстового документа. Пример простейшего сайта.
- •78.Структура процессов информационных технологий.
- •79.Структура ресурсов информационных технологий.
- •80.Структура средств информационных технологий.
- •81.Существование решения антагонистической игры в смешанных стратегиях.
- •82.Таймер модельного времени. Представление результатов моделирования.
- •83.Теневые цены (двойственные оценки) в задачах линейного программирования
- •84. Теоремы двойственности в линейном программировании
- •85. Технология разработки математических моделей оптимального управления экономикой
- •86.Точечные и интервальные оценки многомерных статистик.
- •87.Факторный анализ.
- •88.Финансовые ренты. Основные понятия и формулы.
- •89.Формирование видения компании: базовая идеология.
- •90.Характеристика симплекс-метода.
- •91.Ценовая дискриминация и ценовая политика фирмы на товарном рынке.
- •92.Чистый приведенный доход npv инвестиционного проекта.
- •93.Эконометрическое моделирование отраслевой функции затрат.
2.Адаптивные методы среднесрочного прогнозирования модификация метода стохастической аппроксимации
Термин адаптация выступает в 3х аспектах:
Адаптация как св-во системы приспосабливаться к возможным изменениям функционирования; 2) Адаптация как сам процесс приспосабливания адаптивной системы; 3) адаптация как метод, основанный на отработке поступающей информации и приспособленный для достижения некоторого критерия оптимизации.
Под адаптацией понимается способность системы использовать получение новой информации для приближения своего поведения и структуры к оптимальным.
Если системы не адаптируются, то они перестают функционировать оптимально и перестают существовать. Адаптация не происходит мгновенно, а происходит постепенно в силу инерционности большинства систем. В процессе адаптации системы эволюционируют. Это св-во необходимо учесть в прогнозировании. Прогнозные модели должны быть адаптивными:
Для целей краткосрочного прогнозирования это означает необходимость «уловить» последние по времени сиюминутные отклонения от сложившихся тенденций, которые вызваны кратковременным действием некоторых факторов.
В случае среднесрочного прогнозирования нет смысла учитывать текущие кратковременные отклонения от сложившихся тенденций – они в скором времени прекратятся. Необходимо «уловить» наметившиеся в последние моменты наблюдений неминуемые изменения в тенденциях развития, и, учитывая их, откорректировать прогнозную модель.
Все методы по использованию принципа адаптации делятся на: 1) Методы корректировки коэффициентов прогнозных моделей и 2) методы взвешивания данных. В первой группе наиболее эффективным считается применение метода стохастической аппроксимации.
О
бъект
управления настолько сложен, что
рассматривается как «черный ящик»:
Если перед исследователем стоит задача найти такое упр. воздействие X на систему, чтобы на выходе из нее было достигнуто некое оптимальное значение Y, численно равное наперед заданному U, то для этого используют управляющее воздействие. В допустимой области X берем произвольно x[0], проводим эксперимент с данным значением входа в систему и наблюдаем на выходе некоторое значение Y(x[0]). У исследователя есть первая пара взаимосвязи между входной переменной и выходной. Если бы отклик был стационарным, можно было бы с помощью конечного множества наблюдений собрать достаточное множество пар {x[n], Y(x[n])} и оценить коэффициент регрессии взаимосвязи, с помощью которого можно решить задачу. Но изучаемый объект нестационарен.
Для поиска оптимального значения х выбирают убывающую с ростом n последовательность положительных чисел γ[n]. Необходимо определить такое значение x1 принадлежащие множеству X1, чтобы: Y(x)=U. Для выбора значения X в следующем эксперименте используется рекуррентное соотношение Роббинса-Монро:
.
- параметр демпфирования колебаний.
Алгоритмы метода стохастической аппроксимации:
С постоянным шагом
.
Напр. ½.С переменным шагом
.
Напр. 1/n+1С нелинейным шагом
.
Напр.
Цель
адаптации: изменение параметров эк
модели, чтоб расчетное значение показателя
наилучшим образом приближалось к некот
оптим знач
.
Предмет адаптации: коэф-ты эконометрич
мод. Ожидаемые рез-ты адаптации:
корректировка коэф-ов мод, чтоб она
вернулась в заданные границы изменения
обусловленные действием случ факторов.
Алгоритм
адаптации: пусть имеется ад модель
.
Выразим каждый параметр
.
Если теперь в полученное выражение
подставить вместо расчетного значения
показателя Y его фактическое значение,
то будет получен такой параметр
,
который в точности описывает фактическое
наблюдение на каждом t без какой-либо
ошибки аппроксимации:
).
Модификация алгоритма Роббинса-Монро
будет иметь вид:
.
Для линейной
модели:
.
Нижняя граница:
.
Верхняя граница:
.
.
Адаптация модели не происходит в том случае, если
Если
,
то
,
и
.
и
.
.
Для многофакторной модели:
.
Для нелинейной модели:
