Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биохимия ответы 1 модуль.docx
Скачиваний:
48
Добавлен:
27.01.2020
Размер:
297.46 Кб
Скачать

Роль в организме

Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Все это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения. Помимо энергетической АТФ выполняет в организме ещё ряд других не менее важных функций: -Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот. 

-Также известна роль АТФ в качестве медиатора в синапсах 

Энергетический эффект цикла Кребса Итак, при распаде 1 моль ацетил-КоА образуется 12 моль атф, следовательно, из 2 моль ацетил-КоА - 24 моль атф.

Суммируя энергетические эффекты всех этапов распада глюкозы в аэробных условиях, получаем 38 моль АТФ.

28.Анаболизм и катаболизм, амфиболические пути. Охарактеризуйте цитратный цикл.

Две стороны (фазы) метаболизма. Метаболизм складывается из двух противоположных сторон : катаболизма и анаболизма.

Катаболизм – это фаза, в которой происходит последовательное расщепление сложных молекул до более простых, таких, как СО2, вода и аммиак. Процессы катаболизма сопровождаются выделением энергии. Эта энергия частично аккумулируется в форме макроэргического соединения – аденозинтрифосфата (АТФ).

Анаболизм – это фаза метаболизма, в которой происходит образование (биосинтез) сложных молекул (белков, липидов, полисахаридов) из простых предшественников. Процессы биосинтеза протекают с затратой энергии. Источником этой энергии служит распад АТФ до АДФ и неорганического фосфата.

Метаболические пути, выполняющие как катаболическую, так и анаболическую функцию, называют амфиболическими.

Амфиболический путь (двойственный) - путь, в ходе которого сочетаются катаболические и анаболические превращения т.е. наряду с разрушением какого-либо соединения происходит синтез другого.

Амфиболические пути связаны с терминальной, или окончательной, системой окисления веществ, где они сгорают до конечных продуктов (СO2 и Н2O) с образованием большого количества энергии. Кроме них конечными продуктами метаболизма являются мочевина и мочевая кислота, образующиеся в специальных реакциях обмена аминокислот и нуклеотидов. Схематически связь метаболизма через систему АТФ-АДФ и амфиболический цикл метаболитов

29.Окислительное и субстратное фосфорилирование. Общие принцины биологической термодинамики. Современные представления о мех-ме окислительного фосфорилирования.

Окислительное фосфорилирование происходит в митохондриях в процессе биологического окисления в дыхательной цепи. Энергия, высвобождающаяся в дыхательной цепи, аккумулируется в макроэргических соединениях АТФ. Энергия, освобождающаяся в процессе биологического окисления только частично рассеивается в виде тепла (около 40%), а большая часть накапливается в форме макроэргических молекул АТФ (около 60%). Молекула АТФ – это универсальный акцептор и донор химической энергии в клетках. Гидролиз каждой макроэргической связи АТФ сопровождается выделением 7,3 килокалорий энергии на 1 грамм-молекулу. В дыхательной цепи при переносе каждой пары электронов на 1 атом кислорода образуется 3 молекулы АТФ, то есть отношение фосфора к кислороду равно трем: P / О = 3. Синтез молекулы АТФ происходит в определенных участках дыхательной цепи. На каждом этапе синтеза АТФ аккумулируется 8 ккал на каждую грамм-молекулу образовавшейся АТФ.

Субстратное фосфорилирование участвует в анаэробном расщеплении глюкозы. За счет субстратного фосфорилирования 1 молекулы глюкозы синтезируется 6 молекул АТФ.

Термодинамика биологических систем.

Термодинамика– наука о превращениях энергии при её переносе в макроскопических системах.

Макроскопические системы (макросистемы)– материальные объекты, состоящие из большого числа частиц.

Биологические системы– макроскопические. Обмен энергией с окружающей средой – обязательное условие их существования.

Особенности термодинамического подхода:

  1. Описание макросистем в целом (без учёта составляющих)

  2. Ограниченность – с помощью термодинамики нельзя исследовать природу или механизм биологического явления.

  3. Универсальность – приложимость к процессам самого разного рода от транспорта веществ через мембрану клетки до биологической эволюции.