Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биохимия ответы 1 модуль.docx
Скачиваний:
48
Добавлен:
27.01.2020
Размер:
297.46 Кб
Скачать

Ковалентная (химическая) модификация

Ковалентная модификация заключается в обратимом присоединении или отщеплении определенной группы, благодаря чему изменяется активность фермента. Чаще всего такой группой является фосфорная кислота, реже метильные и ацетильные группы. Фосфорилирование фермента происходит по остаткам серина и тирозина. Присоединение фосфорной кислоты к белку осуществляют ферменты протеинкиназы, отщепление – протеинфосфатазы.

Ферменты могут быть активны как в фосфорилированном, так и в дефосфорилированном состоянии. Например, ферменты гликогенфосфорилаза и гликогенсинтаза при потребности организма в глюкозе фосфорилируются, при этом фосфорилаза гликогена становится активной и начинает расщепление гликогена, а гликогенсинтаза неактивна. При необходимости синтеза гликогена оба фермента дефосфорилируются, синтаза при этом становится активной, фосфорилаза – неактивной.

Источником ионизирующего излучения являются радиоактивные вещества, имеющиеся в горных породах, а также космические тела, которые излучают радиацию. Те изотопы элементов, которые выпускают радиоактивное излучение, называют радиоактивными изотопами или радионуклидами.

Есть три вида ионизирующего излучения: альфа-, бета- и гамма-частицы (рис. 7.8). Альфа- и бета-частицы образуют корпускулярное,

гамма-частицыэлектромагнитное излучение, которое близко к рентгеновскому. Радиоактивные вещества, выпускающих альфа- и бета-излучения, ученые в основном называют “внутренними излучателями”, поскольку они интенсивно излучают радиацию, оказавшись внутри или вблизи ткани. Радиоактивные вещества, испускающие гамма-излучения, зачисляют в “внешних излучателей”, ведь они влияют на организм, находясь снаружи.

13.Механизмы регуляции активности ферментов.

Активность ферментов может изменяться под влиянием различных внешних факторов. Вещества, способные оказывать влияние на активность ферментов, обозначают как модуляторы ферментов. В свою очередь модуляторы подразделяют на две группы:

1. Активаторы. Под их влиянием происходит увеличение активности ферментов. В качестве активаторов могут выступать катионы металлов. Например, Na+ является активатором амилазы слюнных желез человека.

2. Ингибиторы. Вещества, под влиянием которых происходит уменьшение активности ферментов.

Ингибиторы представляют большую группу веществ, которые различаются по механизму ингибирующего действия.

По продолжительности ингибирующего эффекта ингибиторы подразделяются на:

· необратимые (которые при взаимодействии с ферментом навсегда лишают его ферментативной активности);

· обратимые (которые временно уменьшают активность фермента).

Как правило, необратимые ингибиторы взаимодействуют с функциональными группами активного центра фермента. Они ковалентно соединяются с ними и, таким образом, блокируют их. В результате этого фермент утрачивает способность взаимодействовать с субстратом.

14.Уровни структурной организации ферментов. Особенности функционирования ферментов биомембран.

В клетке есть ферменты разной структурной организации – от простых мономерных до ферментов, объединенных в ферментные ансамбли. Ферменты по их структурной организации можно разделить на:

1Мономерные ферменты;

2. Олигомерные ферменты (простые, построенные из субъединиц одного типа);

3. Олигомерные ферменты (сложные, построенные из субъединиц разного типа);

4. Ферментные комплексы : а) мультиферментные комплексы,

Функции и задачи биомембран.

Биомембраны выполняют двойную функцию:

  1. Поддерживают целостность клетки, обособленность от окружающей среды, автономность внутреннего устройства.

  2. Осуществляют постоянный обмен с окружающей средой (энергией, веществом, информацией).

Изучение биомембран важно для понимания жизнедеятельности организма в норме, для выяснения механизма патологии и для верного подхода к созданию комплекса врачебных мероприятий.

Задачи биомембран:

  1. Транспорт веществ.

  2. Обеспечение основных биоэнергетических процессов (синтез АТФ при окислении фосфолипидов, генерация биопотенциалов, распад АТФ при нервно-мышечной деятельности).

  3. Участие во всех видах рецепции.

Различают клеточную (плазматическую) и внутриклеточные биомембраны.

15.Сущность биологического катализа. Роль белков в биологическом катализе.

Биологические катализаторы белковой природы - это ферменты. Их основа - сложные структурная организация, обладающая рядом специфичных свойств. Проще говоря, это уникальные белки, способные снижать энергию активации процессов в живых организмах и осуществлять их со скоростью, превышающей обычные значения в несколько миллионов раз. Можно привести множество примеров подобных молекул: каталаза; амилаза; оксиредуктаза; глюкозооксидаза; липаза; инвертаза; лизоцим; протеаза и другие. Таким образом, можно сделать вывод: ферменты - биологические катализаторы белковой природы, которые действуют как сильные ускорители, позволяя осуществлять тысячи процессов в живых организмах с очень высокой скоростью. На их действии основано пищеварение, окисление, восстановление.

Для чего нужны биологические катализаторы?

Переоценить их значение сложно. Ведь они не только позволяют живым организмам жить, дышать, питаться, осуществлять процессы метаболизма, но и дают нам возможность уничтожать промышленные отходы, получать лекарства, защищать и оберегать свое здоровье и состояние окружающей среды.

Биокатализ [греч. bio(s) — жизнь и katalysis — разрушение] — ускорение с помощью ферментов химических реакций, протекающих в живых организмах. Б. — процесс высокоэффективный, специфичный и, в отличие от химического катализа, происходит в более «мягких» условиях, т. е. условиях, свойственных живому организму (температуре, давление, реакции среды и т. д.). Одну из ведущих ролей Б. в промышленности занимают процессы окислительной биотрансформации органических соединений, в том числе углеводородного сырья.

Являясь катализаторами, ферменты имеют ряд общих с небиологическими катализаторами свойств:

1. Ферменты не входят в состав конечных продуктов реакции и выходят из нее, как правило, в первоначальном виде, т.е. они не расходуются в процессе катализа.

2. Ферменты не могут возбудить те реакции, протекание которых противоречит законам термодинамики, они ускоряют только те реакции,которые могут протекать и без них.

3. Ферменты не смещают положения равновесия, а лишь ускоряют его достижение.

Биологический катализ имеет некоторые специфические свойства:

1. По своему химическому строению все ферменты являются белками.

2. Эффективность ферментов намного выше, чем небиологических катализаторов (скорость протекания реакции при участии фермента выше на несколько порядков).

3. Ферменты обладают узкой специфичностью, избирательностью действия на субстраты, т.е. на вещества, превращение которых они катализируют. 4. Регулируемость ферментов как биокатализаторов.

5. Термолабильность ферментов. Скорость химических реакций зависит от температуры, поэтому катализируемые ферментами реакции также чувствительны к изменениям температуры. Однако вследствие белковой природы фермента тепловая денатурация при повышении температуры будет снижать эффективную концентрацию фермента с соответствующим снижением скорости реакции.

16.Основы биокатализа. Общие свойства ферментов.

Биокатализ то же, что ферментативный катализ) — ускорение химических реакций в живых клетках специальными белками — ферментами. В основе биокатализа лежат те же самые химические закономерности, что и в основе небиологического катализа, используемого в химическом производстве.

Исследование особенностей биокатализа позволило определить роль каждого вида биокатализаторов в жизнедеятельности организмов и предложить новые подходы к лечению заболеваний [например, рибозимы для лечения СПИДа, абзимы в качестве каталитических вакцин, регуляторы (чаще ингибиторы) ферментов в качестве эффективных лекарственных средств]. Биокатализ широко используется также в пищевой промышленности и биотехнологии. Структурную организацию биокатализаторов и химического взаимодействия, лежащие в основе биокатализа, изучает энзимология.

Свойства ферментов

Будучи белками, ферменты обладают всеми их свойствами. Вместе с тем биокатализаторы характеризуются рядом специфических качеств, тоже вытекающих из их белковой природы. Эти качества отличают ферменты от катализаторов обычного типа. Сюда относятся термолабильность ферментов, зависимость их действия от значения рН среды, специфичность и, наконец, подверженность влиянию активаторов и ингибиторов.

Термолабильность ферментов объясняется тем, что температура, с одной стороны, воздействует на белковую часть фермента, приводя при слишком высоких значениях к денатурации белка и снижению каталитической функции, а с другой стороны, оказывает влияние на скорость реакции образования фермент-субстратного комплекса и на все последующие этапы преобразования субстрата, что ведет к усилению катализа.

Зависимость каталитической активности фермента от температуры выражается типичной кривой. До некоторого значения температуры (в среднем до 5О°С) каталитическая активность растет, причем на каждые 10°С примерно в 2 раза повышается скорость преобразования субстрата. В то же время постепенно возрастает количество инактивированного фермента за счет денатурации его белковой части. При температуре выше 50°С денатурация ферментного белка резко усиливается и, хотя скорость реакций преобразования субстрата продолжает расти, активность фермента, выражающаяся количеством превращенного субстрата, падает.

Детальные исследования роста активности ферментов с повышением температуры, проведенные в последнее время, показали более сложный характер этой зависимости, чем указано выше: во многих случаях она не отвечает правилу удвоения активности на каждые 10°С в основном из-за постепенно нарастающих конформационных изменений в молекуле фермента.

Температура, при которой каталитическая активность фермента максимальна, называется его температурным оптимумом.

Температурный оптимум для различных ферментов неодинаков. В общем для ферментов животного происхождения он лежит между 40 и 50°С, а растительного - между 50 и 60°С. Однако есть ферменты с более высоким температурным оптимумом, например, у папаина (фермент растительного происхождения, ускоряющий гидролиз белка) оптимум находится при 8О°С. В то же время у каталазы (фермент, ускоряющий распад Н2О2 до Н2О и О2) оптимальная температура действия находится между 0 и -10°С, а при более высоких температурах происходит энергичное окисление фермента и его инактивация.

Зависимость активности фермента от значения рН среды была установлена свыше 50 лет назад. Для каждого фермента существует оптимальное значение рН среды, при котором он проявляет максимальную активность. Большинство ферментов имеет максимальную активность в зоне рН поблизости от нейтральной точки. В резко кислой или резко щелочной среде хорошо работают лишь некоторые ферменты.

Переход к большей или меньшей (по сравнению с оптимальной) концентрации водородных ионов сопровождается более или менее равномерным падением активности фермента.

Влияние концентрации водородных ионов на каталитическую активность ферментов состоит в воздействии ее на активный центр. При разных значениях рН в реакционной среде активный центр может быть слабее или сильнее ионизирован, больше или меньше экранирован соседними с ним фрагментами полипептидной цепи белковой части фермента и т.п. Кроме того, рН среды влияет на степень ионизации субстрата, фермент-субстратного комплекса и продуктов реакции, оказывает большое влияние на состояние фермента, определяя соотношение в нем катионных и анионных центров, что сказывается на третичной структуре белковой молекулы. Последнее обстоятельство заслуживает особого внимания, так как определенная третичная структура белка-фермента необходима для образования фермент-субстратного комплекса.

Специфичность - одно из наиболее выдающихся качеств ферментов. Эго свойство их было открыто еще в прошлом столетии, когда было сделано наблюдение, что очень близкие по структуре вещества - пространственные изомеры (- и -метилглюкозиды) расщепляются по эфирной связи двумя совершенно разными ферментами.

Таким образом, ферменты могут различать химические соединения, отличающиеся друг от друга очень незначительными деталями строения, такими, например, как пространственное расположение метоксильного радикала и атома водорода при 1-м углеродном атоме молекулы метилглюкозида.

17.Международная классификация и номенклатура ферментов. Трансферазы, роль переноса химических групп, привести примеры.

Классификация ферментов.

В принятой классификации ферменты объединены в группы по типу важнейших биохимических процессов, лежащих в основе жизнедеятельности любого организма. По этому принципу все ферменты делят на 6 классов.

  1. Оксидоредуктазы - ускоряют реакции окисления - восстановления.

  2. Трансферазы - ускоряют реакции переноса функциональных групп и молекулярных остатков.

  3. Гидролазы - ускоряют реакции гидролитического распада.

  4. Лиазы - ускоряют негидролитическое отщепление от субстратов определенных групп атомов с образованием двойной связи (или присоединяют группы атомов по двойной связи).

  5. Изомеразы - ускоряют пространственные или структурные перестройки в пределах одной молекулы.

  6. Лигазы - ускоряют реакции синтеза, сопряженные с распадом богатых энергией связей.

Номенклатура ферментов  Энзимология очень долго не располагала строго научной номенклатурой ферментов. Наименования ферментам давали по случайным признакам (тривиальная номенклатура), по названию субстрата (рациональная), по химическому составу фермента, наконец, по типу катализируемой реакции и характеру субстрата.  Примерами тривиальной номенклатуры могут служить названия таких ферментов, как пепсин (от греч. пепсис - пищеварение), трипсин (от греч. трипсис - разжижаю) и папаин (от названия дынного дерева Carica papaja, из сока которого он выделен). По действию все эти ферменты являются протеолитическими, т. е. ускоряют гидролиз протеинов (белков). Характерное название была дано группе окрашенных внутриклеточных ферментов, ускоряющих окислительно-восстановительные реакции в клетке, - цитохромы (от лат. citos - клетка и chroma - цвет).  Наибольшее распространение получила рациональная номенклатура, согласно которой название фермента составляется из названия субстрата характерного окончания -аза. Она была предложена более столетия тому назад, в 1883 г. Э. Дюкло - учеником Л. Пастера. Так, фермент, ускоряющий реакцию гидролиза крахмала, получил название амилаза (от греч. амилон - крахмал), гидролиза жиров - липаза (от греч. липос - жир), белков (протеинов) - протеаза, мочевины - уреаза (от греч. уреа - мочевина) и т. п.  Когда методами аналитической химии были достигнуты известные успехи в расшифровке химической природы простетических групп, возникла новая номенклатура ферментов. Их стали именовать по названию простетической группы, например, геминфермент (простетическая группа - гем), пиридоксаль-фермент (простетическая группа - пиридоксаль) и т.п.  Затем в названии фермента стали указывать как на характер субстрата, так и на тип катализируемой реакции. К примеру, фермент, отнимающий водород от молекулы янтарной кислоты, называют сукцинатдегидрогеназой, подчеркивая этим одновременно и химическую природу субстрата, и отнятие атомов водорода в процессе ферментативного действия

Трансферазы – ферменты, переносящие атомные группы (в зависимости от того, перенос какой группы они осуществляют, их соответственно называют). Среди них известны ферменты, осуществляющие транспорт больших остатков, например гликозилтрансферазы и другие. Трансферазы благодаря разнообразию переносимых ими остатков принимают участие в промежуточном обмене веществ.

Подклассы трансфераз (их 8) различают по характеру групп, переносимых на акцептор. К подклассу трансфераз, катализирующих перенос одноуглеродных фрагментов, относятся метил-трансферазы, трансферазы гидроксиметильных, формальных и др. родственных групп, карбоксил- и карбамоилтрансферазы и др.

В отдельный подкласс объединяют трансферазы, катализирующие перенос альдегидных и кетонных групп (фрагментов молекул углеводов). В него входит, напр., транскетолаза, переносящая фрагмент НОСН2С(О) в пентозофосфатном цикле.

Подкласс трансфераз составляют ацилтрансферазы, катализирующие перенос ацильной группы с образованием эфиров и амидов. Донором в этих р-циях обычно является ацилкофер-мент А (см. Пантотеновая кислота). Р-ции, катализируемые этими трансферазами, наиб. характерны для метаболизма жирных к-т. Акцепторами ацетила (донор ацетилкофермент А) м. б. аминокислоты, глюкозамин, остаток фосфорной к-ты и др.

Нек-рые трансферазы этого подкласса при трансляции в качестве донора используют аминоацил-транспортную РНК. Пример трансфераз этого подкласса-фосфатацетилтрансфераза, катализирующая перенос ацетила на фосфорную к-ту с образованием ацетилфосфорной к-ты.

В отдельный подкласс объединяют трансферазы, катализирующие перенос алкильных групп (отличающихся от СН3), как замещенных, так и не замещенных. Хорошо изученные трансферазы этого подкласса-глутатионтрансферазы, катализирующие перенос разл. остатков на глутатион, а также метионин-аденозил- и енолпируват-трансфераза.

18.Международная классификация и номенклатура ферментов. Оксидоредуктазы, структура, роль.

Оксидоредуктазы

Оксидоредуктазы катализируют окислительно-восстановительные реакции и подразделяются на 5 основных подклассов:· оксидазы;· аэробные дегидрогеназы;· анаэробные дегидрогеназы;· гидропероксидазы;· оксигеназы.

Оксидазы.Катализируют удаление водорода из субстрата, используя при этом в качестве акцептора водорода только кислород. Оксидазы содержат медь, продуктом реакции является вода (исключение составляют реакции, катализируемые уриказой и моноаминоксидазой, в результате которых образуется Н2О2).

Аэробные дегидрогеназы.Катализируют удаление водорода из суб-страта, используя в качестве акцептора водорода не только кислород, но и ис-кусственные акцепторы (например, метиленовый синий). Эти дегидрогеназы относятся к флавопротеинам. В результате реакции образуется пероксид во-дорода, а не вода. К ферментам группы аэробных дегидрогеназ относятся: дегидрогеназа L-аминокислот (оксидаза L-аминокислот), катализирующая окислительное дезаминирование природных L-аминокислот, и ксантиндегидрогеназа (ксантиноксидаза), катализирующая окисление ксантина в мочевую кислоту. Молибденсодержащий фермент ксантиноксидаза играет важную роль в катаболизме пуриновых оснований.

Анаэробные дегидрогеназы. Катализируют удаление водорода из суб-страта, но не способны использовать кислород в качестве акцептора. 

Гидропероксидазы.К их числу относятся ферменты пероксидаза и каталаза.

Пероксидаза − фермент, катализирующий окисление пероксидом водорода различных органических соединений − фенолов, аминов, аскорбиновой кислоты, цитохрома С. Пероксидаза обнаружена в растениях, молоке, лейкоцитах, тромбоцитах, а также в тканях, в которых происходит метаболизм эйкозаноидов. Фермент содержит протогем, который в отличие от гемовых групп большинства гемопротеинов слабо связан с апоферментом. Реакция, катализируемая пероксидазой, имеет сложный характер; 

Каталаза − это гемопротеин, содержащий 4 гемовые группы. Наряду с пероксидазной активностью каталаза способна использовать одну молекулу Н2О2 в качестве донора электронов, а другую − в качестве акцептора электронов. В организме каталаза в основном разлагает пероксид водорода, образующийся при действии аэробных дегидрогеназ:

Каталаза содержится в крови, костном мозге, мембранах слизистых оболочек, почках и печени.

Оксигеназы.Ферменты этой группы катализируют включение кисло-рода в молекулу субстрата, которое происходит в две стадии:

1) кислород связывается с активным центром фермента;

2) происходит реакция, в результате которой, связанный кислород восстанавливается или переносится на субстрат.

Оксигеназы не относятся к ферментам, которые катализируют реакции, снабжающие клетку энергией; они участвуют в синтезе и деградации многих типов метаболитов, токсинов и ксенобиотиков. Оксигеназы подразделяются на 2 подгруппы.

Монооксигеназы (гидроксилазы). Эти ферменты катализируют включение в субстрат только одного из атомов молекулы кислорода. Другой атом кислорода восстанавливается до воды; для чего необходим дополнительный донор электронов (косубстрат):

Диоксигеназы (истинные оксигеназы). Эти ферменты катализируют включение в молекулу субстрата обоих атомов молекулы кислорода: Примером служат железосодержащие ферменты 1.13.11.5 гомогентизатдиоксигеназа и 1.13.11.6 3-гидроксиантранилатдиоксигеназа, а также некоторые гемсодержащие ферменты, в частности триптофандиоксигеназа (триптофанпирролаза).

19.Международная классификация и номенклатура ферментов. Гидролазы, их роль в обмене веществ, привести примеры. Определение активности амилазы в слюне, моче, диагностическое значение.

Гидролазы - участвуют в расщеплении сложных веществ (углеводов, жиров, белков) до простых с участием воды. Играют огромную роль при мобилизации запасных питательных веществ в процессе прорастания семян. Могут действовать и в обратном направлении, синтезируя сложные вещества из их компонентов.

Отщепляют от субстратов определœенные группы без участия воды с образованием двойной связи. Могут действовать и в противоположном направлении — присоединять группу к двойной связи. В качестве примера приведем один из важных ферментов углеводного обмена — альдолазу. В процессе дыхания с его помощью происходит расщепление глюкозы на две триозы, что облегчает окисление дыхательного субстрата. При фотосинтезе данный же фермент соединяет две триозы с образованием гексозы.

ОПРЕДЕЛЕНИЕ АМИЛАЗНОЙ АКТИВНОСТИ СЛЮНЫ

Амилазную активность слюны выражают в количестве субстрата (крахмала), расщепляемого 1 мл слюны за определенный промежуток времени (30 мин). Определение основано на нахождении максимального разведения, при котором слюна еще расщепляет крахмал полностью за взятый промежуток времени. О наличии или отсутствии крахмала в растворе судят по йодной реакции.