
- •Частина і оцінка антропогенно-техногенного забруднення атмосферного повітря
- •Розділ 1 Атмосфера і її роль. Джерела і наслідки забруднення атмосфери
- •1.1. Атмосфера – зовнішня оболонка Землі
- •1.2. Будова атмосфери
- •1.3. Забруднення атмосфери і його види
- •1.4. Джерела забруднення атмосфери
- •1.5. Основні хімічні домішки, що забруднюють атмосферу
- •1.6. Наслідки забруднення атмосфери
- •1.6.1. Зміна природного складу і параметрів атмосфери
- •1.6.2. Кислотні опади
- •1.6.3. Запустелювання
- •1.6.4. Забруднення атмосфери біологічними домішками
- •Розділ 2 Нормування впливу техногенних об’єктів на атмосферне повітря
- •2.1. Показники нормування забруднюючих речовин в повітрі
- •2.2. Оцінка стану повітряного середовища
- •2.3. Науково-технічні нормативи на гранично допустимі викиди
- •2.4. Інструменти економічного механізму охорони атмосферного повітря
- •2.5. Порядок встановлення нормативів збору за забруднення і погіршення якості атмосферного повітря
- •Розділ 3 Організація спостережень за забрудненням атмосферного повітря
- •3.1. Загальні вимоги до організації спостережень за забрудненням атмосферного повітря
- •3.2. Види постів спостережень, програми і терміни спостережень
- •3.3. Лабораторії спостереження і контролю за забрудненням атмосферного повітря
- •3.4. Автоматизовані системи спостереження і контролю за станом атмосферного повітря
- •Розділ 4 Оцінювання забруднення атмосферного повітря на основі даних лабораторних спостережень
- •4.1. Методи оцінювання забруднення атмосферного повітря
- •4.2. Методи відбору проб атмосферного повітря для лабораторного аналізу
- •4.3. Метеорологічні спостереження при відборі проб повітря
- •4.4. Оцінювання стану атмосферного повітря за результатами спостережень
- •Частина іі технологія захисту атмосфери від аерозольних пилових викидів
- •Розділ 5 Методи захисту атмосферного повітря від шкідливих викидів
- •Розділ 6 Методи і системи очищення повітря від аерозолів
- •6.1. Характеристики аерозольних викидів в атмосферу
- •6.2. Класифікація методів і апаратів для очищення аерозолів
- •6.3. Основні характеристики апаратів для очистки аерозолів
- •Розділ 7 Механічне пиловловлювання
- •7.1. Пилоосаджувальні камери
- •7.2. Циклонні осаджувачі
- •7.3. Вихрові пиловловлювачі
- •Розділ 8 Фільтрування аерозолів
- •8.1. Волокнисті фільтри
- •8.2. Тканинні фільтри
- •8.2.1. Фільтрувальні тканини
- •8.2.2. Рукавні фільтри
- •8.3. Зернисті фільтри
- •Розділ 9 Мокре пиловловлювання
- •9.1. Порожнисті газопромивачі
- •9.2. Розпилювальні циклони з водяною плівкою
- •9.3. Пінні пиловловлювачі
- •9.4. Ударно-інерційні пиловловлювачі
- •9.5. Швидкісні пиловловлювачі (скрубери Вентурі)
- •Розділ 10 Електричне очищення газів
- •10.1. Принцип дії електрофільтрів
- •10.2. Конструкції електрофільтрів
- •Розділ 11 Вдосконалення процесів і апаратів для пилоочистки
- •11.1. Спеціалізація апаратів
- •11.2. Попередня обробка аерозолів
- •11.3. Режимна інтенсифікація
- •11.4. Конструктивно-технологічне вдосконалення
- •11.5. Багатоступінчате очищення
- •Частина ііі технологія захисту атмосфери від викидів шкідливих газів та пари
- •Розділ 12 Методи і системи очищення повітря від газоподібних домішок
- •Розділ 13 Абсорбційна і хемосорбційна очистка газових викидів
- •13.1. Використання методів абсорбції і хемосорбції для вловлення газоподібних домішок
- •1 − Абсорбер; 2 − холодильник; 3 − десорбер; 4 − теплообмінник
- •13.2. Конструкції і принцип дії абсорберів
- •13.2.1. Насадкові абсорбери
- •1 − Сідло Берля; 2 − кільце Рашига; 3 − кільце Палля; 4 − розетка Теллера; 5 − сідло “Інталокс”
- •13.2.2. Тарілчасті абсорбери
- •13.2.3. Розпилюючі абсорбери
- •13.3. Десорбція забруднювачів із абсорбентів
- •Розділ 14 Адсорбційна очистка газових викидів
- •14.1. Використання методу адсорбції для вловлення газоподібних сполук
- •14.2. Будова і принцип дії адсорберів
- •14.2.1. Адсорбери періодичної дії
- •1 − Точка проскакування; 2 − адсорбційна зона; о.Н. − об’єм, заповнений насадкою
- •1 − Адсорбер; 2, 10, 12 − вентилятори; 3 − фільтри; 4 − вогнезагороджувач; 5, 8 − холодильник; 6 − розподільник; 7 − конденсатор; 9 − збірник;
- •11 − Калорифер; 13 − гідрозасув
- •14.2.2. Адсорбери безперервної дії
- •1 − Зона адсорбції; 2 − розподільні тарілки; 3 − холодильник; 4 − підігрівач; 5 − затвор
- •1 − Псевдозріджений шар; 2 − решітка; 3 − переточний пристрій; 4 − затвор
- •1 − Основний псевдозріджений шар; 2 − додатковий шар; 3 − решітка
- •1, 2 − Патрубки; 3 − решітка; 4 − конус
- •1 − Корпус перетоку 2 − щілина; 3 − похила решітка; 4 − решітка
- •14.4. Десорбція адсорбованих продуктів
- •Розділ 15 Конденсаційне очищення газових викидів
- •15.1. Використання конденсаційного очищення газів і пари
- •15.2. Принцип конденсаційного очищення
- •15.3. Типи і конструкції конденсаторів
- •Розділ 16 Термокаталітична і термічна очистка газових викидів
- •16.1. Термокаталітична очистка газових викидів
- •16.2. Термічні методи знешкодження газоподібних сполук
- •1 − Гідрозасув; 2 − вогнезагороджувач; 3 − основний пальник; 4 − черговий пальник; 5 − система запалення чергового пальника
- •1 − Реактор; 2 − ежекційний змішувач; 3 − електрозапал; 4 − черговий пальник; 5 − основний пальник; 6 − насадка-вогнезагороджувач
- •1 − Факельний пальник; 2 − труба; 3 − розривні мембрани; 4 − вогнезагороджувач; 5 − інжекційний змішувач з електрозапалом; 6 − система запалення чергового пальника
- •1 − Черговий пальник; 2 − повітряна труба; 3 − захисний козирок; 4 − корпус факельного пальника; 5 − парова дюза; 6 − кишеня для термопари
- •Розділ 17 Очистка газових викидів автомобільного транспорту
- •17.1. Характеристика викидів двигунів внутрішнього згорання
- •17.2. Зниження викидів двигунів внутрішнього згорання
- •17.3. Нейтралізація вихлопів двигунів внутрішнього згорання
- •17.4. Вловлення аерозолів, що викидаються дизельним двигуном
- •Розділ 18 Оцінка ефективності очищення газових викидів
- •18.1. Оцінка ефективності пристроїв для очищення газових викидів
- •18.2. Вибір варіантів газоочистки
- •Додатки
- •Нормативи збору, який справляється за викиди основних забруднюючих речовин від стаціонарних джерел забруднення
- •Технічні дані лабораторії “Атмосфера-іі”
- •Технічні дані станції “Повітря-1”
- •Технічні дані електроаспіратора типу еа-1
- •Технічні дані електроаспіратора типу еа-2
- •Технічні дані повітровідбірника “Компонент”
- •Характеристики насадок (розміри дані в мм)
- •Література
7.3. Вихрові пиловловлювачі
Вихрові пиловловлювачі з’явилися в промисловості в 50-х роках, але вони встигли набути значного поширення. У вихровому пиловловлювачі, як і в циклоні, сепарація пилу заснована на використанні відцентрових сил. Основною їх відмінністю від циклонів є наявність допоміжного завихрюючого газового потоку.
Використовують два види вихрових пиловловлювачів: соплові (рис. 7.8, а) і лопаткові (рис. 7.8, б).
Рис. 7.13. Вихрові пиловловлювачі соплового (а) і лопаточного (б) типів:
1 – камера; 2 – лопатковий завихрювач; 3 – підпірна шайба; 4 – сопловий завихрювач; 5 – кільцевий лопатковий завихрювач
У апараті того і іншого типу запилений газ поступає в камеру через вхідний патрубок із завихорювачем типу “розетка” і обтічником. У кільцевому просторі між корпусом апарату і вхідним патрубком розташована підпірна шайба, яка забезпечує безповоротний спуск пилу в бункер.
У вихровому апараті соплового типу (рис. 7.8, а) запилений потік закручується лопаточним завихрювачем і рухається вгору, піддававшись при цьому дії витікаючих з тангенціально розташованих сопел струменів вторинного газового потоку. Під дією відцентрових сил зважені в потоці частинки відкидаються до периферії, а звідти – в створюваний струменями вихровий потік вторинного газу, що направляє їх вниз в кільцевий міжтрубний простір. Обтічник направляє потік газу до периферії. Пилові частинки за рахунок дії відцентрових сил переміщаються з центральної частини потоку до периферії.
Далі процес в апаратах двох видів дещо відрізняється. У сопловому апараті на запилений потік впливають струмені вторинного повітря (газу), що виходять з сопел, розташованих тангенціально. Потік переходить в обертальний рух.
Відкинуті під дією відцентрових сил до стінок апарату пилові частинки захоплюються спіральним потоком вторинного повітря (газу) і разом з ним рухаються вниз в бункер. Тут частинки пилу виділяються з потоку, а очищене повітря (газ) знову поступає на очищення.
Сопла для подачі вторинного повітря потрібно розташувати по низхідній спіралі. Оптимальною є установка 8 сопел діаметром 11 мм двома спіральними рядами під кутом нахилу 30°. Як оптимальне рекомендується встановлення лопаток завихрювача під кутом 30°...40° при відношенні діаметру завихрювача до діаметру апарату, рівному 0,8...0,9.
Вихровий пиловловлювач лопаточного типу (рис. 7.8, б) відрізняється тим, що вторинний потік вводиться у верхній частині апарату через завихрювач. У апараті лопаточного типу вторинне повітря, відібране з периферії очищеного потоку, подається кільцевим направляючим апаратом з похилими лопатками. За основними показниками апарати лопаточного типу виявилися ефективнішими: при однаковому діаметрі камери – 200 мм і продуктивності 330 м/год гідравлічний опір соплового апарату склав 3,7∙103 Па, ефективність 96,5%, а лопатки – відповідно 2,8∙103 Па і 98% (при вловленні особливо дрібнодисперсного пилу).
Застосовують наступні способи підведення до вихрового пиловловлювача повітря, необхідного для закручування потоку, що знепилюється: з навколишнього середовища, з очищеного потоку, із запиленого потоку. Перший варіант доцільний, якщо очищенню піддається гарячий газ, який необхідно охолодити. Застосовуючи другий варіант, можна дещо підвищити ефективність очищення, оскільки для використання в якості вторинного повітря відбирають периферійну частину потоку очищеного повітря з найбільшим вмістом залишкового пилу. Третій варіант найбільш економічний: продуктивність установки підвищується на 40...65% із збереженням ефективності очищення.
Продуктивність вихрового пиловловлювача по газу можна змінювати в межах від 0,5 до 1,15 по відношенню до номінальної. Це пояснюється вирішальним впливом на ефективність очищення параметрів вторинного потоку, при збереженні яких залишається незмінною окружна швидкість закручування потоку запилених газів і відповідно відцентрова сила, що діє на частинки пилу.
Вихровий пиловловлювач може застосовуватися для очищення вентиляційних і технологічних викидів від дрібнодисперсного пилу в хімічній, нафтохімічній, харчовій, гірничорудній і інших галузях промисловості. У вихрових пиловловлювачах досягається досить висока для апаратів, заснованих на використанні відцентрових сил, ефективність очищення – 98...99% і вище. На ефективність очищення робить незначний вплив зміна навантаження (у межах від 50 до 115%) і вмісту пилу в повітрі (газі), що очищається, – від 1 до 500 г/м3. Апарат може застосовуватися для очищення газів з температурою до 700°С. У вихровому пиловловлювачі не спостерігається зносу внутрішніх стінок апарату, що пов’язане з особливостями його повітряного режиму. Апарат компактніший, ніж інші пиловловлювачі, призначені для сухого очищення викидів.
Ступінь очищення у вихрових пиловловлювачах значно вищий, ніж в сухих циклонах, і може досягати значень, характерних для мокрих циклонів. Ефективність вихрових пиловловлювачів при очищенні повітря (газу) від ряду пилу і пилоподібних матеріалів, що мають різний медіанний діаметр частинок, характеризують наступні дані (табл. 7.7).
Таблиця 7.7
Ефективність вихрових пиловловлювачів
Пил або пилоподібний матеріал |
Медіанний діаметр частинок, мкм |
Ефективність пиловловлювання, % |
Синтетичний порошок |
4 |
98,0 |
Целюлоза |
6 |
96,5 |
Пральний порошок |
10 |
98,0 |
Карбонат кальцію |
11 |
99,0 |
Епоксидна смола |
22 |
98,0 |
Поліакрилнітрил |
32 |
99,8 |
За кордоном вихрові пиловловлювачі виготовляються на продуктивність від 330 до 30000 м3/год газу, що очищається (повітря). Одиночні апарати при необхідності можна згрупувати на необхідну продуктивність. Відомі установки з продуктивністю більше 300000 м3/год. Маючи високу ефективність очищення, установки вихрових пиловловлювачів успішно конкурують з електричними і тканинними пиловловлювачами.