
- •Содержание
- •Введение
- •Раздел 1. Геометрическая и структурная кристаллографии
- •Тема 1.1. Основные характеристики
- •Кристаллического состояния вещества
- •Тема 1.2. Кристаллографические индексы узлов, узловых рядов и узловых плоскостей
- •Тема 1.3. Кристаллографические проекции
- •Тема 1.4. Элементы симметрии кристаллических многогранников
- •Тема 1.5. Классы симметрии, сингонии и категории кристаллов
- •Классов симметрии кристаллов
- •Тема 1.6. Специфические элементы симметрии кристаллических структур
- •Тема 1.7. Трансляция и системы трансляций (решетки бравэ)
- •Тема 1.8. Условия выбора и характеристики элементарных ячеек
- •Тема 1.10. Пространственные группы симметрии и правильные системы точек
- •Раздел 2. Элементы кристаллохимии и кристаллофизики
- •Тема 2.1.Типы взаимодействия частиц
- •В кристаллах
- •Тема 2.2. Координационные числа и координационные многогранники
- •Тема 2.3. Плотноупакованные слои и многослойные плотнейшие упаковки
- •Тема 2.4. Пустоты в плотнейших упаковках
- •Тема 2.5. Основные структурные типы металлических элементов
- •Тема 2.6. Изоморфизм и полиморфизм
- •Тема 2.7. Структурные типы алмаза и графита
- •Тема 2.8. Симметрия и анизотропия физических свойств кристаллов
- •Вопросы для самопроверки
- •Раздел 3. Идеальный кристалл и дефекты строения реальных кристаллических материалов. Точечные дефекты
- •Тема 3.1. Понятие об идеальном кристалле
- •Тема 3.2. Точечные, линейные, поверхностные и объемные дефекты кристаллического строения. Виды точечных дефектов.
- •Тема 3.3. Энергия образования и равновесная концентрация вакансий и межузельных атомов. Миграция точечных дефектов
- •Вакансия 1,5 ± 0,5 1,0 ± 0,5
- •Тема 3.4. Источники и стоки точечных дефектов
- •Тема 3.5. Комплексы точечных дефектов
- •Вопросы для самопроверки
- •Раздел 4. Дислокации, их движение и упругие свойства
- •Тема 4.1. Теоретическая и реальная прочность
- •Кристаллов
- •Тема 4.2. Основные типы дислокаций и их движение
- •Тема 4.3. Контур и вектор бюргерса дислокаций
- •Тема 4.4. Плотность дислокаций
- •Раздел 5. Дислокации и дефекты упаковки в типичных металлических структурах тема 5.1. Полные и частичные дислокации
- •Тема 5.2. Дислокационные реакции
- •Тема 5.3. Плотнейшие упаковки и дефекты упаковки
- •Тема 5.4. Стандартный тетраэдр и дислокационные реакции в гцк-решётке
- •Дислокации в упорядоченных сплавах. В сплавах с дальним порядком (сверхструктурой) атомы разного сорта закономерно чередуются в определённых кристаллографических плоскостях и направлениях.
- •Раздел 6. Пересечение дислокаций и их взаимодействие с точечными дефектами
- •Тема 6.1. Пересечение единичных краевых, краевой и винтовой и винтовых дислокаций
- •Пересечение единичных краевой и винтовой дислокаций. Пусть в плоскости, перпендикулярной линии винтовой дислокации ав, движется краевая дислокация dс (рис. 6.3).
- •Пересечение единичных винтовых дислокаций. Если обе дислокации ав и сd винтовые, то при их пересечении также образуются пороги с краевой ориентацией (рис. 6.4).
- •Тема 6.2. Пороги на дислокациях. Движение дислокаций с порогами
- •Пересечение расщепленных дислокаций. При встрече расщепленных дислокаций их головные частичные дислокации из-за упругого взаимодействия прогибаются в сторону хвостовых частичных дислокаций.
- •Тема 6.3. Взаимодействие дислокаций с вакансиями, межузельными и примесными атомами. Атмосферы коттрелла, снука и сузуки.
- •Атмосферы Коттрелла. Поля напряжений вокруг дислокации и вокруг примесного атома упруго взаимодействуют.
- •Раздел 7. Дислокационные системы и границы раздела
- •Тема 7.1. Образование дислокаций при
- •Кристаллизации и последующем охлаждении металлов. Дислокационные сетки и сплетения.
- •7.2. Размножение дислокаций при пластической деформации
- •Тема 7.3. Границы наклона и кручения, границы малоугловые и большеугловые
- •Раздел 8. Строение твердых фаз и диффузия в металлических сплавах
- •Тема 8.1. Система, сплав, компонент, фаза, структура
- •Тема 8.2. Механические смеси, химические соединения, твердые растворы
- •Тема 8.3. Возможные механизмы диффузии, уравнения диффузии. Основные факторы, влияющие на коэффициент диффузии
- •Вопросы для самопроверки
- •Раздел 9. Кристаллизация расплавов
- •Тема 9.1. Особенности строения жидких сплавов
- •Тема 9.2. Термодинамика, механизм и кинетика процесса кристаллизации
- •9.3. Влияние степени переохлаждения, примесей и модификаторов на процесс кристаллизации, размер и форму кристаллов затвердевшего сплава
- •Тема 9.4. Строение реальных металлических отливок
- •Тема 9.5. Направленная кристаллизация. Выращивание монокристаллов из расплавов
- •Раздел 10. Наклеп и рекристаллизация
- •Тема 10.1. Упругая и пластическая деформация металлов
- •Тема 10.2. Механизмы пластической деформации
- •Тема 10.3. Деформационное упрочнение и его причины
- •Тема 10.4. Понятие о сверхпластичности металлов
- •Тема 10.5. Процессы, происходящие при отжиге деформированных металлов. Разновидности рекристаллизации
- •Тема 10.7. Горячая и холодная пластическая деформация
- •14.В чем различие между холодной и горячей пластической деформацией? Опишите особенности обоих видов деформации.
- •Раздел 11. Диаграммы состояния (фазового равновесия) двойных и тройных систем
- •Тема 11.1. Правило фаз
- •Тема 11.2. Важнейшие типы диаграмм состояния двойных сплавов
- •Раздел 12. Структуры, формирующиеся при неравновесной кристаллизации расплавов
- •Тема 12.1. Кристаллизация сплавов в неравновесных условиях
- •Тема 12.2. Аморфизация металлических сплавов
- •Раздел 13. Превращения в металлических сплавах в твердом состоянии
- •Тема 13.1. Основы термодинамики и кинетики полиморфных превращений
- •Тема 13.2.Образование квазиэвтектоида и мартенситных фаз в сплавах с полиморфными превращениями
- •Тема 13.3. Образование пересыщенных твердых растворов и их распад
- •Раздел 14. Диаграммы состояния и структура сплавов железа с углеродом
- •Тема 14.1. Компоненты и фазы в сплавах железа с углеродом в равновесном состоянии
- •Тема 14.2. Кристаллизация и превращения в твердом состоянии в железоуглеродистых сплавах различного состава
- •Раздел 15. Строение неметаллических материалов
- •Тема 15.1. Строение, стеклообразное состояние и старение полимеров
- •Тема 15.2. Строение и кристаллизация стекол
- •Тема 15.3. Строение керамических материалов
- •Заключение
- •Библиографический список
Тема 10.7. Горячая и холодная пластическая деформация
В зависимости от соотношения температуры деформации и температуры рекристаллизации различают холодную и горячую деформации. Холодной деформацией называют такую, которую проводят при температуре ниже температуры рекристаллизации. Поэтому холодная деформация сопровождается упрочнением (наклепом) металла.
Деформацию называют горячей, если ее проводят при температуре выше температуры рекристаллизации для получения полностью рекристаллизованной структуры.
При горячей обработке давлением (прокатке, прессовании, ковке, штамповке и т. д.) упрочнение в результате наклепа (повышение плотности дислокаций) непосредственно в процессе деформации непрерывно чередуется с процессом разупрочнения (уменьшением плотности дислокаций) при динамической полигонизации и рекристаллизации во время деформации и охлаждения. В этом основное отличие динамической полигонизации и рекристаллизации от статической.
Горячую деформацию в зависимости от состава сплава и скорости деформации обычно проводят при температурах (0,7-0,75) Тпл.
Когда металл после деформации имеет частично рекристаллизованную структуру, то такую обработку правильнее называть неполной горячей, или теплой, деформацией.
Вопросы для самопроверки
Что называется деформацией?
Какие виды деформации вы знаете? Приведите примеры.
Как осуществляется пластическая деформация в кристалле? Назовите две разновидности пластической деформации.
Дайте понятия «монокристалл» и «поликристалл».
Что такое «наклёп»?
Как вы понимаете понятие «текстура»?
Каким образом получают текстуру деформации?
Какие отрицательные свойства появляются у наклепанного металла?
Что такое «возврат»? Виды возврата накепанного металла.
Что такое «рекристаллизация»? Какие вам известны стадии рекристаллизации?
Стальная проволока для тросов производится методом холодной вытяжки. Чем объясняется высокая прочность тросов?
Что представляют собой диаграммы рекристаллизации?
В чем различие между холодной и горячей пластической деформацией?
14.В чем различие между холодной и горячей пластической деформацией? Опишите особенности обоих видов деформации.
Раздел 11. Диаграммы состояния (фазового равновесия) двойных и тройных систем
В зависимости от характера физико–химического взаимодействия компонентов в металлических сплавах возможны три основных типа твердых (кристаллических) фаз:
1) химические элементы,
2) химические соединения,
3) твердые растворы.
Основной (матричной) фазой большинства промышленных сплавов являются твердые растворы.
Структуру сплавов различного химического состава можно установить путем анализа соответствующих диаграмм фазового равновесия или диаграмм состояния.
Под состоянием понимают наличие тех или иных фаз в сплаве данного химического состава при данной температуре. Диаграммы состояния строятся в координатах «температура–химический состав сплавов системы А–В».
Линии диаграмм состояния – это линии фазовых превращений («критические линии»), при пересечении которых фазовый состав (структура) сплавов обязательно изменяется.
Диаграмма состояния представляет собой графическое изображение состояния любого сплава изучаемой системы в зависимости от концентрации и температуры.
Диаграммы состояния показывают устойчивые состояния, т.е. состояния, которые при данных условиях обладают минимумом свободной энергии, и поэтому ее также называют диаграммой равновесия, так как она показывает, какие при данных условиях существуют равновесные фазы.
Анализ диаграммы состояния позволяет определить число и химическую природу фаз, границы их существования, характер взаимодействия компонентов, наличие соединений, их состав и относительную устойчивость без выделения образующихся веществ в чистом виде и их анализа.
Теоретическое и практическое значение диаграмм состояния очень велико. Изучение любого сплава прежде всего начинается с построения и анализа диаграммы состояния соответствующей системы, так как диаграмма состояния дает возможность изучать фазы и структурные составляющие сплава, определяет виды обработки, которые можно применять для сплава.