- •Содержание
- •Введение
- •Раздел 1. Геометрическая и структурная кристаллографии
- •Тема 1.1. Основные характеристики
- •Кристаллического состояния вещества
- •Тема 1.2. Кристаллографические индексы узлов, узловых рядов и узловых плоскостей
- •Тема 1.3. Кристаллографические проекции
- •Тема 1.4. Элементы симметрии кристаллических многогранников
- •Тема 1.5. Классы симметрии, сингонии и категории кристаллов
- •Классов симметрии кристаллов
- •Тема 1.6. Специфические элементы симметрии кристаллических структур
- •Тема 1.7. Трансляция и системы трансляций (решетки бравэ)
- •Тема 1.8. Условия выбора и характеристики элементарных ячеек
- •Тема 1.10. Пространственные группы симметрии и правильные системы точек
- •Раздел 2. Элементы кристаллохимии и кристаллофизики
- •Тема 2.1.Типы взаимодействия частиц
- •В кристаллах
- •Тема 2.2. Координационные числа и координационные многогранники
- •Тема 2.3. Плотноупакованные слои и многослойные плотнейшие упаковки
- •Тема 2.4. Пустоты в плотнейших упаковках
- •Тема 2.5. Основные структурные типы металлических элементов
- •Тема 2.6. Изоморфизм и полиморфизм
- •Тема 2.7. Структурные типы алмаза и графита
- •Тема 2.8. Симметрия и анизотропия физических свойств кристаллов
- •Вопросы для самопроверки
- •Раздел 3. Идеальный кристалл и дефекты строения реальных кристаллических материалов. Точечные дефекты
- •Тема 3.1. Понятие об идеальном кристалле
- •Тема 3.2. Точечные, линейные, поверхностные и объемные дефекты кристаллического строения. Виды точечных дефектов.
- •Тема 3.3. Энергия образования и равновесная концентрация вакансий и межузельных атомов. Миграция точечных дефектов
- •Вакансия 1,5 ± 0,5 1,0 ± 0,5
- •Тема 3.4. Источники и стоки точечных дефектов
- •Тема 3.5. Комплексы точечных дефектов
- •Вопросы для самопроверки
- •Раздел 4. Дислокации, их движение и упругие свойства
- •Тема 4.1. Теоретическая и реальная прочность
- •Кристаллов
- •Тема 4.2. Основные типы дислокаций и их движение
- •Тема 4.3. Контур и вектор бюргерса дислокаций
- •Тема 4.4. Плотность дислокаций
- •Раздел 5. Дислокации и дефекты упаковки в типичных металлических структурах тема 5.1. Полные и частичные дислокации
- •Тема 5.2. Дислокационные реакции
- •Тема 5.3. Плотнейшие упаковки и дефекты упаковки
- •Тема 5.4. Стандартный тетраэдр и дислокационные реакции в гцк-решётке
- •Дислокации в упорядоченных сплавах. В сплавах с дальним порядком (сверхструктурой) атомы разного сорта закономерно чередуются в определённых кристаллографических плоскостях и направлениях.
- •Раздел 6. Пересечение дислокаций и их взаимодействие с точечными дефектами
- •Тема 6.1. Пересечение единичных краевых, краевой и винтовой и винтовых дислокаций
- •Пересечение единичных краевой и винтовой дислокаций. Пусть в плоскости, перпендикулярной линии винтовой дислокации ав, движется краевая дислокация dс (рис. 6.3).
- •Пересечение единичных винтовых дислокаций. Если обе дислокации ав и сd винтовые, то при их пересечении также образуются пороги с краевой ориентацией (рис. 6.4).
- •Тема 6.2. Пороги на дислокациях. Движение дислокаций с порогами
- •Пересечение расщепленных дислокаций. При встрече расщепленных дислокаций их головные частичные дислокации из-за упругого взаимодействия прогибаются в сторону хвостовых частичных дислокаций.
- •Тема 6.3. Взаимодействие дислокаций с вакансиями, межузельными и примесными атомами. Атмосферы коттрелла, снука и сузуки.
- •Атмосферы Коттрелла. Поля напряжений вокруг дислокации и вокруг примесного атома упруго взаимодействуют.
- •Раздел 7. Дислокационные системы и границы раздела
- •Тема 7.1. Образование дислокаций при
- •Кристаллизации и последующем охлаждении металлов. Дислокационные сетки и сплетения.
- •7.2. Размножение дислокаций при пластической деформации
- •Тема 7.3. Границы наклона и кручения, границы малоугловые и большеугловые
- •Раздел 8. Строение твердых фаз и диффузия в металлических сплавах
- •Тема 8.1. Система, сплав, компонент, фаза, структура
- •Тема 8.2. Механические смеси, химические соединения, твердые растворы
- •Тема 8.3. Возможные механизмы диффузии, уравнения диффузии. Основные факторы, влияющие на коэффициент диффузии
- •Вопросы для самопроверки
- •Раздел 9. Кристаллизация расплавов
- •Тема 9.1. Особенности строения жидких сплавов
- •Тема 9.2. Термодинамика, механизм и кинетика процесса кристаллизации
- •9.3. Влияние степени переохлаждения, примесей и модификаторов на процесс кристаллизации, размер и форму кристаллов затвердевшего сплава
- •Тема 9.4. Строение реальных металлических отливок
- •Тема 9.5. Направленная кристаллизация. Выращивание монокристаллов из расплавов
- •Раздел 10. Наклеп и рекристаллизация
- •Тема 10.1. Упругая и пластическая деформация металлов
- •Тема 10.2. Механизмы пластической деформации
- •Тема 10.3. Деформационное упрочнение и его причины
- •Тема 10.4. Понятие о сверхпластичности металлов
- •Тема 10.5. Процессы, происходящие при отжиге деформированных металлов. Разновидности рекристаллизации
- •Тема 10.7. Горячая и холодная пластическая деформация
- •14.В чем различие между холодной и горячей пластической деформацией? Опишите особенности обоих видов деформации.
- •Раздел 11. Диаграммы состояния (фазового равновесия) двойных и тройных систем
- •Тема 11.1. Правило фаз
- •Тема 11.2. Важнейшие типы диаграмм состояния двойных сплавов
- •Раздел 12. Структуры, формирующиеся при неравновесной кристаллизации расплавов
- •Тема 12.1. Кристаллизация сплавов в неравновесных условиях
- •Тема 12.2. Аморфизация металлических сплавов
- •Раздел 13. Превращения в металлических сплавах в твердом состоянии
- •Тема 13.1. Основы термодинамики и кинетики полиморфных превращений
- •Тема 13.2.Образование квазиэвтектоида и мартенситных фаз в сплавах с полиморфными превращениями
- •Тема 13.3. Образование пересыщенных твердых растворов и их распад
- •Раздел 14. Диаграммы состояния и структура сплавов железа с углеродом
- •Тема 14.1. Компоненты и фазы в сплавах железа с углеродом в равновесном состоянии
- •Тема 14.2. Кристаллизация и превращения в твердом состоянии в железоуглеродистых сплавах различного состава
- •Раздел 15. Строение неметаллических материалов
- •Тема 15.1. Строение, стеклообразное состояние и старение полимеров
- •Тема 15.2. Строение и кристаллизация стекол
- •Тема 15.3. Строение керамических материалов
- •Заключение
- •Библиографический список
Раздел 2. Элементы кристаллохимии и кристаллофизики
Тема 2.1.Типы взаимодействия частиц
В кристаллах
В первом приближении кристаллы образуются за счет трех основных типов химической связи - ионной, ковалентной и металлической, хотя обычно существует некоторая комбинация этих типов.
Ионные кристаллы. Кристаллы с ионной связью образуют элементы с сильно различающимися электроотрицательностями (способность атома в молекуле притягивать к себе электроны). Типичные представители - галогениды щелочных металлов (NaCl, СsF). Ионный кристалл в идеализированном представлении состоит из положительно и отрицательно заряженных ионов (например, Nа+ и Cl-). Устойчивость ионных кристаллов обеспечивается в основном за счет электростатического (кулоновского) притяжения между катионами и анионами. Ионная связь ненаправленная (все ионы взаимодействуют со всеми) и ненасыщенная, поэтому у ионных криcталлов высокие координационные числа, т.е. плотнейшее расположение атомов.
Ковалентные кристаллы. Ковалентная связь формируется между атомами при обобществлении ими электронов с образованием общей электронной пары. Типичными представителями кристаллов с ковалентной связью являются алмаз и соединения АIIIВV и AIIBVI (BN, ZnS). Ковалентная связь направленная, насыщаемая. Ковалентные кристаллы имеют, как правило, малую плотность, хрупкие и в ряде случаев очень твердые (нитриды, карбиды).
Металлические кристаллы. Металлическая связь возникает при взаимодействии атомов электроположительных элементов, внешние валентные электроны которых относительно слабо связаны с ядром. При образовании металлического кристалла валентные электроны отрываются от атомов, и металл представляет собой остов из положительно заряженных ионов, между которыми движутся свободные электроны (так называемый "электронный газ"). Металлическая связь ненаправленная и ненасыщенная, поэтому металлы, как правило, имеют плотноупакованные решетки (ГЦК, ОЦК, ГПУ).
Тема 2.2. Координационные числа и координационные многогранники
Важными характеристиками кристаллических структур являются также координационные числа и координационные многогранники (или фигуры) частиц разного сорта, образующих эти структуры.
Под координационным числом понимают число ближайших однотипных частиц, окружающих данную частицу в кристаллической решетке (при этом координационное число иона определяется числом ближайших ионов противоположного знака).
Координационным многогранником (координационной фигурой) называют многогранник (фигуру), который получается при мысленном соединении прямыми линиями центров частиц, составляющих координационное число данной частицы.
Более удобным является представление кристаллической структуры координационными полиэдрами – тетраэдрами и октаэдрами.
Действительно, если соединить прямыми линиями каждый шар плотнейшей упаковки с его 12 соседями и провести плоскости через каждую пару таких линий, то эти плоскости разобьют все пространство на тетраэдрические и октаэдрические объемы. При этом от каждого шара-аниона останется лишь одна точка – его центр, лежащий в общей вершине 14 координационных полиэдров – 8 тетраэдров и 6 октаэдров, окружающих каждый шар любой плотнейшей упаковки.
Удобство этого способа заключается в том, что при моделировании кристаллических структур используются только координационные полиэдры, соответствующие заполненным пустотам. Например, структуру с заполненными тетраэдрическими пустотами можно представить как совокупность тетраэдров, а структуру с заполненными октаэдрическими пустотами – как совокупность октаэдров; при этом характер сочленения тетраэдров и октаэдров может быть различным.
В общем же случае в кристаллических структурах заполненными могут быть одновременно и тетраэдрические, и октаэдрические пустоты при довольно сложном характере их взаимного расположения.
