
- •Математические модели в сетях связи
- •Содержание
- •1. Развитие технологий и услуг связи
- •1.1 Показатели развития
- •1.2 Тенденции развития технологий и услуг
- •1.3 Развитие технологий М2М
- •2. Задачи моделирования
- •2.1 Задачи моделирования, предметная область
- •2.2 Пример моделей развития технологий и услуг
- •2.3 Иллюстрации (надежность сетей связи)
- •2.4 Задачи модели по уровням ВОС (OSI)
- •3. Сети связи
- •3.1 Состав сети связи
- •3.2 Структура сети связи
- •3.3 Узел связи
- •3.4 Линия связи
- •3.5 Пространственное разделение каналов
- •3.6 Частотное разделение каналов
- •3.7 Временное разделение каналов (формирование ИКМ)
- •3.8 Временное разделение каналов (формирование пакетов)
- •4. Математическое моделирование
- •Введение
- •4.1 Сеть связи как СМО
- •2 Сеть связи как СМО
- •2.1.4 Технические нормы на показатели функционирования сетей передачи данных Минкомсвязи
- •2.1.5 Показатели надежности (Минкомсвязи)
- •3. Модели систем массового обслуживания
- •Обозначения СМО по Кендаллу (Kendall’s notation)
- •4.2 Характеристики потоков заявок
- •4.3 Простейший поток вызовов
- •4.4 Другие виды потоков
- •4.5 Поток с простым последействием
- •4.6 Поток с ограниченным последействием
- •4.7 Поток Пальма, потоки Эрланга
- •2.4 Другие виды потоков
- •4.8 Случайный процесс, характеристики трафика как случайного процесса
- •4.9 Автокорреляционная функция
- •Пример реализаций простейшего, самоподобного и антиперсистентного потоков
- •5.2 Поток освобождений
- •Изменение нагрузки, ЧНН, концентрация нагрузки
- •Расчет нагрузки
- •7. Пропускная способность
- •9.2 Функция распределения времени ожидания
- •9.3 Среднее время ожидания
- •9.4 Формула Полячека-Хинчина
- •9.5 Частные случаи
- •10 Основные результаты
- •11 Сети СМО
- •Сети СМО
- •Сложение случайных чисел (справка)
- •Последовательность СМО
- •Пример
- •11.2 Объект измерений
- •11.3 Анализируемые параметры
- •11.4 План проведения измерений
- •11.5 Обработка результатов
- •11.5.1 Точечные оценки
- •11.5.2 Интервальные оценки
- •11.5.3 Доверительный интервал для вероятности
- •11.5.3 Гистограммы, функции распределения
- •11.5.4 Функция распределения
- •12.2 Общая структура имитационной событийной модели
- •12.4 Получение потока событий с заданными свойствами
- •Эмпирический закон распределения
- •13. Пример расчета пропускной способности
- •Порядок расчета
- •расчет необходимой пропускной способности
- •Вариант расчета для общего случая
- •Модели выбора структуры
- •14.2 Пути, маршруты, веса, длина пути
- •14.3 Некоторые определения
- •14.4 Матричные представления
- •14.5 Деревья, остов графа
- •Алгоритмы теории графов (задачи динамического программирования)
- •14.5 Структура с наименьшей протяженностью линий (задача поиска кратчайшего остова (SST) графа)
- •14.5 Пример алгоритма Краскала
- •14.5 Кратчайший остов (SST) графа (алгоритм Прима)
- •14.5 Пример алгоритма Прима
- •14.5 Пример алгоритма Прима (продолжение)
- •Размещение узла в сети связи
- •размещение центров графа
- •размещение центров графа
- •размещение медиан графа
- •размещение медиан графа
- •размещение узла в сети связи – поиск центра и медианы графа
- •Вычисление длин кратчайших путей между вершинами
- •Алгоритм Флойда-Уоршалла
- •Алгоритм Флойда-Уоршалла (нахождение всех кратчайших путей в графе)
- •Пример реализации алгоритма Флойда-Уоршелла на VB
- •Алгоритм Дейкстры (описание 2)
- •Алгоритм Дейкстры (пример)
- •Алгоритм Дейкстры (поиск кратчайшего пути)
- •Некоторые алгоритмы поиска путей
- •Приближенные решения
- •муравьиный алгоритм
- •муравьиный алгоритм
- •Задачи кластерного анализа
- •Кластерный анализ
- •Кластерный анализ
- •Алгоритм кластеризации FOREL
- •Алгоритм кластеризации k-средних
- •Пример кластеризации
- •Применение кластерного анализа для выбора структуры сети
- •3.3 Выбор координат базовой станции при произвольном законе распределения трафика по территории
- •4.4 Моделирование и реализация, публикации
- •Модели надежности сети связи
- •3.3 Модели надежности сети связи
- •Общие определения
- •Иллюстрации (надежность сетей связи)
- •3.5 Метод добавления-удаления (IE – inclusion-exclusion)
- •Имитационное моделирование (надежность)
- •Задачи прогнозирования
- •Оптимизация сети связи
- •1. Исходные данные
- •2. Свойства трафика
- •Задачи прогнозирования (примеры)
- •Задачи прогнозирования (примеры)
- •Ассоциативный метод
- •Результаты(пример)
- •Аналитические модели 1. Линейная регрессия
- •Миграция трафика
- •Миграция на примере ОТТ сервисов
- •Задачи оптимизации
- •2 Надежность сети связи
- •Аналитические методы оптимизации
- •Экстремумы функции
- •Безусловная оптимизация
- •Условная оптимизация
- •2 Выпуклые функции
- •3 Условия Каруша-Куна-Таккера (ККТ)
- •Численные методы оптимизации
- •1 Общий алгоритм численных методов
- •Покоординатный спуск (пример)
- •3.2 Метод Хука-Дживса (поиск по образцу)
- •Метод Хука-Дживса (пример)
- •3.3 Симплекс метод Нелдера-Мида (поиск по деформируемому многограннику)
- •Симплекс метод Нелдера-Мида (пример)
- •3.4 Комплексный метод Бокса (Условная оптимизация)
- •3.5 Метод штрафных функций (Условная оптимизация)
- •3.4 Некоторые другие методы оптимизации выпуклых функций
- •4 Стохастические методы
- •4.1 Слепой случайный поиск
- •4.2 Эволюционный метод (генетический алгоритм)
- •Генетический алгоритм
- •Генетический алгоритм (пример)
- •Случайные графы (модели сети беспроводной связи)
- •Случайные графы
- •Случайные графы
- •Изменение связности сети
- •Влияние числа узлов сети на дисперсию связности
- •Приоритетное обслуживание
- •Алгоритм распределения трафика
- •Оптимизация структуры сети
- •Расписание управления трафиком
- •Качество обслуживания
- •Постановка задачи
- •Модель расписания управления трафиком
- •Задача оптимизации расписания управления
- •Модель реакции трафика
- •Условия переноса трафика
- •Описание стоимости времени
- •Пример оптимизации расписания управления
- •Балансировка трафика
- •Балансировка трафика
- •(нечеткие методы)
- •(нечеткие методы)
- •1. Распределение случайной величины
- •Случайная величина
- •Распределение случайной величины
- •Примеры функций распределения случайной величины (1)
- •Примеры функций распределения случайной величины (2)
- •Плотность распределения случайной величины
- •Примеры плотности распределения (1)
- •Примеры – равномерное распределение (2)
- •Числовые характеристики случайной величины (1)
- •Числовые характеристики случайной величины (2)
- •Числовые характеристики случайной величины (3)
- •2. Некоторые распределения вероятностей
- •3. Численные методы оптимизации Ф1П
- •ОДУ (Справка)
- •4. Модель ВОС (OSI)
- •Модель взаимодействия открытых систем (ВОС)
- •4. Параметры некоторых кодеков
- •Параметры кодеков
- •5. Курсовые проекты
- •Задание на курсовое проектирование

Задачи кластерного анализа
134
Кластерный анализ
Кластерный анализ – это способ группировки многомерных объектов, основанный на представлении результатов отдельных наблюдений точками подходящего геометрического пространства с последующим выделением групп как «сгустков» этих точек (кластеров, таксонов).
Кластерный анализ предполагает выделение компактных, удаленных друг от друга групп объектов, отыскивает «естественное» разбиение совокупности на области скопления объектов.
Он используется, когда исходные данные представлены в виде матриц близости или расстояний между объектами либо в виде точек в многомерном пространстве.
Кластерный анализ ориентирован на выделение некоторых геометрически удаленных групп, внутри которых объекты близки.
Выбор расстояния между объектами является узловым моментом исследования, от него во многом зависит окончательный вариант разбиения объектов на классы при данном алгоритме разбиения.
135

Кластерный анализ
Задано множество объектов A = {a1, a2 , , an }
Объекты имеют некоторые характеристики (например, координаты). Задача кластеризации состоит в выделении подмножеств объектов - кластеров, таким образом, чтобы в рамках кластера свойства объектов были близки, а между объектами разных кластеров они максимально отличались.
Примером может служит разбиение множества точек на плоскости на подмножества, по признаку близости их координат.
Решение задачи заключается в минимизации суммарного отклонения расстояний (метрик) объектов от центров кластеров (центров масс)
136

Алгоритм кластеризации FOREL
(произвольный элемент)
Задано множество объектов A = {a1, a2 , , an }
Объекты имеют некоторые характеристики (например, координаты на плоскости x и y). Задан размер (радиус) кластера R.
|
|
|
|
|
|
|
|
|
|
|
|
|
В результате решения получается некоторое число кластеров, средний размер которых близок к R |
137 |
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|