- •Математические модели в сетях связи
- •Содержание
- •1. Развитие технологий и услуг связи
- •1.1 Показатели развития
- •1.2 Тенденции развития технологий и услуг
- •1.3 Развитие технологий М2М
- •2. Задачи моделирования
- •2.1 Задачи моделирования, предметная область
- •2.2 Пример моделей развития технологий и услуг
- •2.3 Иллюстрации (надежность сетей связи)
- •2.4 Задачи модели по уровням ВОС (OSI)
- •3. Сети связи
- •3.1 Состав сети связи
- •3.2 Структура сети связи
- •3.3 Узел связи
- •3.4 Линия связи
- •3.5 Пространственное разделение каналов
- •3.6 Частотное разделение каналов
- •3.7 Временное разделение каналов (формирование ИКМ)
- •3.8 Временное разделение каналов (формирование пакетов)
- •4. Математическое моделирование
- •Введение
- •4.1 Сеть связи как СМО
- •2 Сеть связи как СМО
- •2.1.4 Технические нормы на показатели функционирования сетей передачи данных Минкомсвязи
- •2.1.5 Показатели надежности (Минкомсвязи)
- •3. Модели систем массового обслуживания
- •Обозначения СМО по Кендаллу (Kendall’s notation)
- •4.2 Характеристики потоков заявок
- •4.3 Простейший поток вызовов
- •4.4 Другие виды потоков
- •4.5 Поток с простым последействием
- •4.6 Поток с ограниченным последействием
- •4.7 Поток Пальма, потоки Эрланга
- •2.4 Другие виды потоков
- •4.8 Случайный процесс, характеристики трафика как случайного процесса
- •4.9 Автокорреляционная функция
- •Пример реализаций простейшего, самоподобного и антиперсистентного потоков
- •5.2 Поток освобождений
- •Изменение нагрузки, ЧНН, концентрация нагрузки
- •Расчет нагрузки
- •7. Пропускная способность
- •9.2 Функция распределения времени ожидания
- •9.3 Среднее время ожидания
- •9.4 Формула Полячека-Хинчина
- •9.5 Частные случаи
- •10 Основные результаты
- •11 Сети СМО
- •Сети СМО
- •Сложение случайных чисел (справка)
- •Последовательность СМО
- •Пример
- •11.2 Объект измерений
- •11.3 Анализируемые параметры
- •11.4 План проведения измерений
- •11.5 Обработка результатов
- •11.5.1 Точечные оценки
- •11.5.2 Интервальные оценки
- •11.5.3 Доверительный интервал для вероятности
- •11.5.3 Гистограммы, функции распределения
- •11.5.4 Функция распределения
- •12.2 Общая структура имитационной событийной модели
- •12.4 Получение потока событий с заданными свойствами
- •Эмпирический закон распределения
- •13. Пример расчета пропускной способности
- •Порядок расчета
- •расчет необходимой пропускной способности
- •Вариант расчета для общего случая
- •Модели выбора структуры
- •14.2 Пути, маршруты, веса, длина пути
- •14.3 Некоторые определения
- •14.4 Матричные представления
- •14.5 Деревья, остов графа
- •Алгоритмы теории графов (задачи динамического программирования)
- •14.5 Структура с наименьшей протяженностью линий (задача поиска кратчайшего остова (SST) графа)
- •14.5 Пример алгоритма Краскала
- •14.5 Кратчайший остов (SST) графа (алгоритм Прима)
- •14.5 Пример алгоритма Прима
- •14.5 Пример алгоритма Прима (продолжение)
- •Размещение узла в сети связи
- •размещение центров графа
- •размещение центров графа
- •размещение медиан графа
- •размещение медиан графа
- •размещение узла в сети связи – поиск центра и медианы графа
- •Вычисление длин кратчайших путей между вершинами
- •Алгоритм Флойда-Уоршалла
- •Алгоритм Флойда-Уоршалла (нахождение всех кратчайших путей в графе)
- •Пример реализации алгоритма Флойда-Уоршелла на VB
- •Алгоритм Дейкстры (описание 2)
- •Алгоритм Дейкстры (пример)
- •Алгоритм Дейкстры (поиск кратчайшего пути)
- •Некоторые алгоритмы поиска путей
- •Приближенные решения
- •муравьиный алгоритм
- •муравьиный алгоритм
- •Задачи кластерного анализа
- •Кластерный анализ
- •Кластерный анализ
- •Алгоритм кластеризации FOREL
- •Алгоритм кластеризации k-средних
- •Пример кластеризации
- •Применение кластерного анализа для выбора структуры сети
- •3.3 Выбор координат базовой станции при произвольном законе распределения трафика по территории
- •4.4 Моделирование и реализация, публикации
- •Модели надежности сети связи
- •3.3 Модели надежности сети связи
- •Общие определения
- •Иллюстрации (надежность сетей связи)
- •3.5 Метод добавления-удаления (IE – inclusion-exclusion)
- •Имитационное моделирование (надежность)
- •Задачи прогнозирования
- •Оптимизация сети связи
- •1. Исходные данные
- •2. Свойства трафика
- •Задачи прогнозирования (примеры)
- •Задачи прогнозирования (примеры)
- •Ассоциативный метод
- •Результаты(пример)
- •Аналитические модели 1. Линейная регрессия
- •Миграция трафика
- •Миграция на примере ОТТ сервисов
- •Задачи оптимизации
- •2 Надежность сети связи
- •Аналитические методы оптимизации
- •Экстремумы функции
- •Безусловная оптимизация
- •Условная оптимизация
- •2 Выпуклые функции
- •3 Условия Каруша-Куна-Таккера (ККТ)
- •Численные методы оптимизации
- •1 Общий алгоритм численных методов
- •Покоординатный спуск (пример)
- •3.2 Метод Хука-Дживса (поиск по образцу)
- •Метод Хука-Дживса (пример)
- •3.3 Симплекс метод Нелдера-Мида (поиск по деформируемому многограннику)
- •Симплекс метод Нелдера-Мида (пример)
- •3.4 Комплексный метод Бокса (Условная оптимизация)
- •3.5 Метод штрафных функций (Условная оптимизация)
- •3.4 Некоторые другие методы оптимизации выпуклых функций
- •4 Стохастические методы
- •4.1 Слепой случайный поиск
- •4.2 Эволюционный метод (генетический алгоритм)
- •Генетический алгоритм
- •Генетический алгоритм (пример)
- •Случайные графы (модели сети беспроводной связи)
- •Случайные графы
- •Случайные графы
- •Изменение связности сети
- •Влияние числа узлов сети на дисперсию связности
- •Приоритетное обслуживание
- •Алгоритм распределения трафика
- •Оптимизация структуры сети
- •Расписание управления трафиком
- •Качество обслуживания
- •Постановка задачи
- •Модель расписания управления трафиком
- •Задача оптимизации расписания управления
- •Модель реакции трафика
- •Условия переноса трафика
- •Описание стоимости времени
- •Пример оптимизации расписания управления
- •Балансировка трафика
- •Балансировка трафика
- •(нечеткие методы)
- •(нечеткие методы)
- •1. Распределение случайной величины
- •Случайная величина
- •Распределение случайной величины
- •Примеры функций распределения случайной величины (1)
- •Примеры функций распределения случайной величины (2)
- •Плотность распределения случайной величины
- •Примеры плотности распределения (1)
- •Примеры – равномерное распределение (2)
- •Числовые характеристики случайной величины (1)
- •Числовые характеристики случайной величины (2)
- •Числовые характеристики случайной величины (3)
- •2. Некоторые распределения вероятностей
- •3. Численные методы оптимизации Ф1П
- •ОДУ (Справка)
- •4. Модель ВОС (OSI)
- •Модель взаимодействия открытых систем (ВОС)
- •4. Параметры некоторых кодеков
- •Параметры кодеков
- •5. Курсовые проекты
- •Задание на курсовое проектирование
4.4Другие виды потоков
1.Нестационарный пуассоновский поток
(который также называется потоком с переменным параметром или нестационарным простейшим потоком)
Параметр потока зависит от времени λ(t)
В силу нестационарности потока вероятность поступления k заявок за интервал времени [t0, t) зависит не только от длины промежутка времени, но и от начального момента t0
2. Неординарный пуассоновский поток
Стационарный неординарный потока без последействия. следует различать поток вызывающих моментов и поток вызовов. Поток вызывающих моментов характеризуется вероятностью появления точно i вызывающих моментов в промежутке времени t. Эта вероятность pi(t) определяется формулой Пуассона. В каждый вызывающий момент поступает L(1≤ L ≤r) заявок.
3. Потоки с простым последействием
Основной характеристикой потока с простым последействием является зависимость параметра потока от состояния коммутационной системы в любой момент времени
λt.(t) = λ(S(t))
47
4.5Поток с простым последействием
1.Симметричный поток
Симметричный поток - поток с простым последействием, параметр которого λ(s(t)) в любой момент времени t зависит только от числа i обслуживаемых в этот момент заявок и не зависит от других характеристик, определяющих состояние s(t) системы обслуживания. При этом зависимость параметра от числа обслуживаемых заявок может быть подчинена любому закону. Поэтому в любом состоянии s(t) с i обслуживаемыми заявками параметр симметричного потока один и тот же, он зависит только от i, т. е. λ(s(t))=λi.
2. Примитивный поток
Примитивным называется такой симметричный поток, параметр которого λi прямо пропорционален числу свободных в данный момент источников заявок.
λi = (n −i)α
где n – число источников заявок, i – число занятых источников, α параметр потока, создаваемого свободным источником
48
4.6Поток с ограниченным последействием
1.Поток с ограниченным последействием - поток вызовов, у которого
последовательность промежутков времени между заявками z1, z2, ... представляет последовательность взаимно независимых случайных величин, имеющих любые функции распределения. Такой поток заявок описывается последовательностью функций распределения промежутков между заявками :
2. Реккурентный поток
Частным случаем потока с ограниченным последействием является рекуррентный поток, который характеризуется одинаково распределенными промежутками времени между заявкамиF:1(z) = F2 (z) = = Fn (z) = F(z)
3. Рекуррентный поток с запаздыванием
Обобщение рекуррентного потока для которого
F2 (z) = F3 (z) = = Fn (z) = F(z); F1(z) ≠ F(z)
n – число источников заявок, i – число занятых источников, α параметр потока, создаваемого свободным источником
49
4.7Поток Пальма, потоки Эрланга
1.Поток Пальма - стационарный ординарный рекуррентный поток с запаздыванием. Для
потока Пальма, как и для любого другого стационарного ординарного потока, λ=1/MZ.
Если на систему обслуживания с потерями и с показательным распределением длительности обслуживания поступают заявки, образующие поток Пальма, то поток необслуженных (потерянных) заявок является также потоком Пальма.
В частности, если поток поступающих заявок будет простейшим, то поток потерянных заявок будет потоком Пальма.
Простейший поток является частным случаем потока Пальма, у которого все промежутки времени между заявками, включая первый, распределены по показательному закону.
2. Просеивание потоков. Потоки Эрланга
Если использовать операцию просеивания потока, при которой точно m заявок теряются, (m+1)-я заявка просеивается, затем снова точно m заявок теряются и (m+1)-я просеивается и т. д. В результате такой операции просеивания простейшего потока образуется так называемый поток Эрланга m-го порядка.
В потоках Эрланга любого порядка промежутки времени между вызовами независимы и распределены по одному и тому же закону, так как эти промежутки представляют собой сумму одинакового числа промежутков простейшего потока. В связи с этим потоки Эрланга являются рекуррентными.
Mzm = m +1 |
Dzm = m +1 |
σzm = |
m +1 |
λ |
λ2 |
|
λ |
50
