
- •Элементы резания. Основные понятия и определения
- •Основные случаи резания металлов
- •1. Свободное резание.
- •2. Несвободное (осложненное) резание (рис. 3,б).
- •Глубина резания
- •Движения механизмов металлорежущих станков
- •Скорость резания и подача
- •Обрабатываемость металлов резанием
- •Механические свойства металлов
- •Физические свойства металлов и сплавов
- •Технологические свойства металлов
- •Ковкость металла
- •Лекция №3 Технологические процессы физико-химической обработки материалов (основные понятия и определения)
- •Тепловое действие электрического тока
- •Световое действие электрического тока
- •Механическое действие электрического тока
- •Химическое действие электрического тока
- •Использование действия электрического тока в электрофизической и электрохимической обработке
- •Кинематические особенности технологических процессов обработки материалов резанием
- •Кинематические особенности технологических процессов обработки материалов давлением
- •Лекция №8 Основные принципы проектирования операций механической обработки материалов резанием
- •Лекция №9 Основные принципы проектирования операций обработки материалов давлением
- •Лекция №10 Основные принципы проектирования операций физико-химической обработки материалов
- •Лекция №11
- •Классификация технологических процессов
- •Обработки резанием
- •Обработка заготовок на станках токарной группы
- •Токарные резцы
- •Обработка заготовок на фрезерных станках
- •Лекция №14 Характеристика методов сверления, зенкерования и развертывания; обработка заготовок на сверлильных станках
- •Лекция №15 Характеристика методов нарезания резьбы; нарезание резьбы на токарных и сверлильных станках
- •Обработка заготовок на протяжных станках
- •Лекция №17 Характеристика методов абразивной обработки; обработка заготовок на шлифовальных станках
- •Классификация технологических процессов обработки металлов давлением
- •Лекция №20 Характеристика прокатного производства Определение прокатки
- •Технологический процесс прокатки
- •Правка проката
- •Продукция прокатного производства
- •Лекция №21 Характеристика технологического процесса ковки Определение ковки
- •Основные операции при проведении ковки
- •Оборудование для ковки
- •Лекция №22 Характеристика технологического процесса горячей объемной штамповки
- •Лекция №23 Характеристика технологического процесса холодной штамповки
- •Лекция №24 Характеристика технологического процесса холодного выдавливания
- •Лекция №25 Характеристика технологического процесса холодной высадки
- •Лекция №26 Характеристика технологического процесса прессования
- •Лекция №27 Характеристика технологического процесса волочения
- •Лекция №28
- •Классификация технологических процессов
- •Физико-химической обработки материалов
- •Лекция №29 Характеристика технологического процесса электроэрозионной обработки
- •Лекция №30 Характеристика технологического процесса электрохимической обработки
- •Лекция №31 Характеристика технологического процесса ультразвуковой обработки
- •Лекция №32 Характеристика технологических процессов лучевой обработки
- •Лекция №33 Характеристика технологических процессов обработки магнитным полем
Лекция №31 Характеристика технологического процесса ультразвуковой обработки
Ультразвуковая обработка материалов (УЗО) является разновидностью механической обработки. УЗО основано на использовании физического явления магнитострикции, т.е. способности ферромагнитных материалов и сплавов изменять размеры поперечного сечения и длину сердечника в переменном магнитном поле.
Эффектом магнитострикции обладают никель, железокобальтовые сплавы (пермендюр), железоалюминиевые сплавы (альфер), ферриты и другие материалы.
При возникновении электромагнитного поля с ультразвуковой частотой 16-30 кГц. Амплитуда колебаний сердечника составляет 5-10 мкм. Для увеличения амплитуды колебаний к сердечнику крепят длинный тонкий стержень-концентратор. Этот стержень является резонансным волноводом переменного поперечного сечения.
Наличие такого концентратора позволяет получить амплитуду колебаний торца сердечника до 40-60 мкм. К стержню крепят рабочий инструмент – пуансон.
Заготовки обрабатывают в ванне, заполненной суспензией, состоящей из воды и абразивного материала. Из абразивных материалов чаще используют карбиды бора и кремния, электрокорунд.
Колебательные движения пуансона передаются абразивным зернам, получающим значительные ускорения в направлении обрабатываемой поверхности заготовки. Ударяясь о поверхность обрабатываемого материала, абразивные зерна скалывают его микрочастицы. Большое число одновременно ударяющихся абразивных зерен, а также высокая частота повторения ударов (до 30 тыс. раз в сек) обуславливают интенсивный съем материала.
Кавитационные явления в жидкости способствуют интенсивному перемешиванию абразивных зерен под инструментом, замене изношенных зерен новыми, а также разрушению обрабатываемого материала. Типовая схема установки для получения отверстий в деталях из хрупкого материала представлена на рис. 51.
Рис. 51. Схема установки для ультразвуковой обработки:
1 – ультразвуковой генератор (УЗГ); 2 – магнитострикционный
преобразователь; 3 – концентратор; 4 – инструмент; 5 – ванна;
6 – заготовка; 7 – кожух.
Для возбуждения колебаний сердечника магнитострикционного преобразователя 2 служит ультразвуковой генератор (УЗГ) 1. Магнитострикционный преобразователь смонтирован в кожухе 7, сквозь который прокачивают воду для охлаждения сердечника. Упругие колебания от магнитострикционного преобразователя усиливаются концентратором 3, на конце которого закреплен инструмент 4, оптимальное значение упругих колебаний инструмента составляет 30 – 100 мкм. Заготовка 6 находится в ванне 5 с абразивной суспензией, состоящей из воды и абразивного материала. Из абразивных материалов используют карбид бора, карбид кремния и электрокорунд. Зернистость выбирают в зависимости от свойств обрабатываемого материала, требуемой точности и шероховатости обрабатываемой поверхности. Процесс обработки заключается в том, что торец инструмента, колеблющийся с ультразвуковой частотой, ударяет по зернам абразива, лежащим на необрабатываемой поверхности, которые скалывают частицы материала заготовки. Для нормальной работы зазор между торцом инструмента и обрабатываемой поверхностью должен быть постоянным, что обеспечивается автоматической регулировкой подачи инструмента. Абразивную суспензию в зону обработки подают под давлением по патрубку насосом.
Ультразвуковым методом обрабатывают хрупкие твердые материалы: стекло, керамику, ферриты, ситаллы, кремний, кварц, драгоценные материалы, в том числе, алмазы, твердые сплавы, титановые сплавы, вольфрам. Этим методом получают глухие и сквозные отверстия любой формы, в поперечном сечении, канавки, пазы. Ультразвуковые методы используются в технологических целях для очистки поверхностей деталей от загрязнений, пайки алюминиевых проводов, сварки тонких проводов с проводящими пленками микросхем.
Ультразвуковая очистка поверхностей деталей основана на явлении кавитации, возникающей в жидкой среде при возбуждении в ней упругих колебаний ультразвуковых частот. При прохождении волны растяжения в жидкости появляются нарушения сплошности-разрывы, в результате чего образуются микрополости (пузырьки), которые при «захлопывании» образуют ударные волны. В качестве жидкой среды используют различные органические растворители. Химическое действие органических растворителей и механическое действие ударных волн обеспечивают очистку поверхностей деталей от загрязнений, а в некоторых случаях от окалины и окислов при достаточной мощности ультразвуковых волн в жидкой среде.
Точность размеров и шероховатость поверхностей, обработанных ультразвуковым способом, зависят от зернистости используемых абразивных материалов и соответствуют точности и шероховатости поверхностей, обработанных шлифованием. Используя микропорошки, можно снизить шероховатость поверхности и довести ее до шероховатости, соответствующей полированию.