
- •Элементы резания. Основные понятия и определения
- •Основные случаи резания металлов
- •1. Свободное резание.
- •2. Несвободное (осложненное) резание (рис. 3,б).
- •Глубина резания
- •Движения механизмов металлорежущих станков
- •Скорость резания и подача
- •Обрабатываемость металлов резанием
- •Механические свойства металлов
- •Физические свойства металлов и сплавов
- •Технологические свойства металлов
- •Ковкость металла
- •Лекция №3 Технологические процессы физико-химической обработки материалов (основные понятия и определения)
- •Тепловое действие электрического тока
- •Световое действие электрического тока
- •Механическое действие электрического тока
- •Химическое действие электрического тока
- •Использование действия электрического тока в электрофизической и электрохимической обработке
- •Кинематические особенности технологических процессов обработки материалов резанием
- •Кинематические особенности технологических процессов обработки материалов давлением
- •Лекция №8 Основные принципы проектирования операций механической обработки материалов резанием
- •Лекция №9 Основные принципы проектирования операций обработки материалов давлением
- •Лекция №10 Основные принципы проектирования операций физико-химической обработки материалов
- •Лекция №11
- •Классификация технологических процессов
- •Обработки резанием
- •Обработка заготовок на станках токарной группы
- •Токарные резцы
- •Обработка заготовок на фрезерных станках
- •Лекция №14 Характеристика методов сверления, зенкерования и развертывания; обработка заготовок на сверлильных станках
- •Лекция №15 Характеристика методов нарезания резьбы; нарезание резьбы на токарных и сверлильных станках
- •Обработка заготовок на протяжных станках
- •Лекция №17 Характеристика методов абразивной обработки; обработка заготовок на шлифовальных станках
- •Классификация технологических процессов обработки металлов давлением
- •Лекция №20 Характеристика прокатного производства Определение прокатки
- •Технологический процесс прокатки
- •Правка проката
- •Продукция прокатного производства
- •Лекция №21 Характеристика технологического процесса ковки Определение ковки
- •Основные операции при проведении ковки
- •Оборудование для ковки
- •Лекция №22 Характеристика технологического процесса горячей объемной штамповки
- •Лекция №23 Характеристика технологического процесса холодной штамповки
- •Лекция №24 Характеристика технологического процесса холодного выдавливания
- •Лекция №25 Характеристика технологического процесса холодной высадки
- •Лекция №26 Характеристика технологического процесса прессования
- •Лекция №27 Характеристика технологического процесса волочения
- •Лекция №28
- •Классификация технологических процессов
- •Физико-химической обработки материалов
- •Лекция №29 Характеристика технологического процесса электроэрозионной обработки
- •Лекция №30 Характеристика технологического процесса электрохимической обработки
- •Лекция №31 Характеристика технологического процесса ультразвуковой обработки
- •Лекция №32 Характеристика технологических процессов лучевой обработки
- •Лекция №33 Характеристика технологических процессов обработки магнитным полем
Лекция №33 Характеристика технологических процессов обработки магнитным полем
Магнитно-импульсная обработка металлов (МИО) – это способ пластической деформации металлов и их сплавов, осуществляемый при прямом преобразовании электрической энергии в механическую непосредственно в самом обрабатываемом изделии. Схема магнитно-импульсного формообразования показана на рис. 56.
Магнитно-импульсная обработка применяется для пластического деформирования металлов и сплавов (обжатие и раздача труб, формовка трубчатых и листовых заготовок, калибровка и т. п.) и основана на непосредственном преобразовании энергии меняющегося с большой скоростью магнитного поля, возбуждаемого, например, при разряде батареи мощных конденсаторов на индуктор, в механическую работу при взаимодействии с проводником (заготовкой). Преимущества метода — отсутствие движущихся и трущихся частей в установках, высокая надёжность и производительность, лёгкость управления и компактность, наличие лишь одного инструмента — матрицы или пуансона (роль другого выполняет поле) и др.: недостатки — относительно невысокий кпд, затруднительность обработки заготовок с отверстиями или.
Деформация токопроводящих материалов при проведении магнитной обработки происходит в результате взаимодействия импульсного магнитного поля, создаваемого внешним источником, с током, индуктируемым этим полем в обрабатываемой детали. Для возбуждения импульсного магнитного поля используется токопроводящий элемент, который называется индуктором и может иметь разнообразную форму.
Рис. 56. Магнитно-импульсное формообразование.
Проходящий по витку ток создает вокруг него магнитное поле. Если в это магнитное поле ввести проводящий контур, то в нем возникнут вихревые токи, величина которых пропорциональна скорости изменения магнитного потока. Взаимодействие вихревого тока в контуре с внешним магнитным полем витка приводит к появлению механических давлений за счет пондермоторных сил. Для создания местной деформации между витком 1 и заготовкой 2 вводится металлический концентратор 3. Давление на заготовку достигает значений 4∙109 Н/м2 (при В=1 МГс). Формирование изделий электромагнитным полем осуществляется на установках, имеющих принципиальную схему, показанную на рис. 57.
Рис.57. Принципиальная схема установки для магнитно-импульсной обработки: 1 – высоковольтный трансформатор; 2 – выпрямитель; 3 – зарядное сопротивление; 4 – конденсатор; 5 – разрядник; 6 – индуктор.
Одним из основных узлов установки является индуктор, от надежности которого зависит эффективность процесса. Так как при деформациях индуктор испытывает силовое воздействие, то его изготавливают из материала, с высоким пределом текучести и высокой температурой плавления, например меди, бериллиевой бронзы, стали, вольфрама. Динамическая прочность индуктора может быть повышена за счет увеличения массивности и улучшения межвитковой изоляции.
Режимы электромагнитной обработки выбирают исходя из коэффициента формуемости различных материалов. Например, для меди k=500000 Гс/м, для нержавеющих сталей k=3∙107 ГС/м.
При обработке деталей изготовленных из металлов с большим сопротивлением, на них накладывают медную фольгу или наносят гальваническим способом медь.
Достоинства электромагнитной импульсной формовки:
1. Большие скорости обработки, позволяющие формовать детали из маловязких и твердых металлов, которые не поддаются пластической деформации при обычных скоростях;
2. Отсутствие механического соприкосновения между деталью и индуктором, что дает возможность штамповать металлы с нанесенными защитными покрытиями;
3. Относительная несложность;
4. Технологическая гибкость;
5. Лучшие условия труда по сравнению с условиями труда при других методах обработки деталей давлением и т.д.
Недостатки процесса:
1. Сравнительно низкий КПД из-за потерь на нагрев и рассеяние;
2. Сложность обработки деталей с отверстиями или пазами, мешающими прохождению тока;
3. Невысокая долговечность индукторов при работе в электрических полях высокой напряженности;
4. Сложность обработки заготовок больших толщин.
Метод магнитоимпульсной обработки используется для операций развальцовки тонкостенных металлических заготовок любых форм; опрессовки хрупких материалов; чеканки; соединения металлических деталей с неметаллическими; штамповки из металлического листа и т.д.