
- •1). Электрический ток. Сила тока
- •2). Электрическая цепь
- •4). Закон Ома
- •5). Работа и мощность в электрической цепи
- •2. Электрическая цепь постоянного тока. Основные элементы и их условно-графические обозначения. Методы расчета цепей постоянного тока (правила Кирхгофа, метод эквивалентных преобразований).
- •Закон Ома для участка цепи
- •Закон Ома для всей цепи
- •Первый закон Кирхгофа
- •Второй закон Кирхгофа
- •3. Основные электроизмерительные приборы. Способы измерения электрических величин и расчет параметров элементов электрической цепи.
- •4. Основные электроизмерительные приборы. Схемы включения. Расширение пределов измерения (шунты, добавочные резисторы). Особенности работы с многопредельными приборами.
- •5. Классы точности электроизмерительных приборов. Погрешность электрических измерений и способы ее минимизации при выборе измерительного прибора.
- •Погрешности электрических измерений
- •Особенности работы с многопредельными приборами.
- •Основные характеристики (параметры) переменного тока
- •Действующее значение переменного тока
- •Применение комплексных чисел для анализа цепей переменного тока
- •9. Идеальные элементы (резистивный, индуктивный и емкостный) в цепи переменного тока. Определения, основные соотношения и особенности цепи. Понятие об активной, реактивной и полной мощностях.
- •10. Реальная катушка и реальный конденсатор в цепи переменного тока. Определения, основные соотношения и особенности цепи. Понятие об активной, реактивной и полной мощностях.
- •1. Катушка (активно-индуктивный r- l элемент) в цепи переменного тока
- •2. Конденсатор (активно-ёмкостный r- с элемент) в цепи переменного тока
- •11. Последовательная цепь переменного тока, содержащая резистивный, индуктивный и емкостный элементы. Основные соотношения и особенности цепи.
- •12. Расчет последовательной цепи переменного тока. Схема замещения. Резонанс напряжений. Особенности цепи.
- •Явление резонанса напряжений
- •Особенности цепи при резонансе напряжений:
- •13. Расчет параллельной цепи переменного тока. Последовательная эквивалентная схема замещения. Резонанс токов. Особенности цепи.
- •1. Определяются комплексные сопротивления ветвей и токи в ветвях
- •2. Определяются комплексные проводимости и параметры треугольников проводимостей ветвей
- •V1. Построение векторной диаграммы параллельной цепи
- •14. Преимущества трехфазных систем. Трех- и четырехпроводные системы. Основные определения. Соединение фаз потребителя по схеме «Звезда» и «Треугольник» (схемы и основные соотношения).
- •Электрическая схема трёхфазной четырёхпроводной лэп
- •Способы соединения фаз потребителя и режимы работы трёхфазной цепи
- •Соединение фаз потребителя по схеме «звезда» (трёхпроводная система)
- •15. Трехфазные цепи. Основные определения. Соединение фаз потребителя по схеме «Звезда» (основные определения и соотношения). Нейтральный провод. Мощность в трехфазной цепи.
- •Электрическая схема трёхфазной четырёхпроводной лэп
- •Способы соединения фаз потребителя и режимы работы трёхфазной цепи
- •Соединение фаз потребителя по схеме «звезда» (трёхпроводная система)
- •Соединение фаз потребителя по схеме «звезда с нейтралью» (четырёхпроводная система)
- •Мощность трехфазной цепи
- •16. Трехфазные цепи. Основные определения. Соединение фаз потребителя по схеме «Треугольник» (основные определения и соотношения). Мощность в трехфазной цепи.
- •Электрическая схема трёхфазной четырёхпроводной лэп
- •Мощность трехфазной цепи
- •17. Преимущества трехфазных систем. Мощность в трехфазной цепи. Способы измерения активной и реактивной мощности в трехфазных цепях.
- •Мощность трехфазной цепи
- •2. Измерение активной мощности методом двух ваттметров
- •3. Измерение активной мощности методом трёх ваттметров
- •4. Измерение активной мощности с помощью трёхфазного ваттметра
- •1. Измерение реактивной мощности методом одного ваттметра
- •2. Измерение реактивной мощности методом двух и трёх ваттметров
- •Передача электрической энергии и потери мощности в лэп
- •Передача электрической энергии и потери мощности в лэп
- •Мероприятия по снижению реактивной мощности потребителей
- •Передача электрической энергии и потери мощности в лэп
- •Мероприятия по снижению реактивной мощности потребителей
- •Передача электрической энергии и потери мощности в лэп
- •Мероприятия по компенсации реактивной мощности потребителей
- •Определение мощности компенсирующих устройств
- •Особенности поведения ферромагнитных материалов в переменном магнитном поле
- •Явление гистерезиса
- •23. Применение ферромагнитных материалов в электротехнике. Магнитно-мягкие и магнитно-твердые материалы. Потери энергии при перемагничивании ферромагнетиков и способы их снижения.
- •24. Передача электрической энергии и потери мощности в лэп. Цель трансформации напряжения. Устройство и принцип работы трансформатора.
- •25. Режимы работы и кпд трансформатора. Опыты холостого хода и короткого замыкания. Внешняя характеристика трансформатора. Режимы работы трансформатора
- •Кпд трансформатора. Потери мощности и кпд трансформатора
- •Внешняя характеристика трансформатора
- •26. Электрический привод. Структура и преимущества электропривода. Нагрев и тепловой режим работы электродвигателя. Номинальная мощность. Характеристика нагрузочных режимов работы электродвигателя.
- •Структурная схема электропривода
- •Тепловые режимы работы и номинальная мощность двигателя
- •28. Основные характеристики трехфазных асинхронных электродвигателей. Способы пуска и регулирования частоты вращения. Реверсирование и способы электрического торможения асинхронных электродвигателей.
- •1) Прямой пуск
- •2) Пуск ад при пониженном напряжении
- •4. Реверсирование ад (изменение направления вращения)
- •Частотное регулирование ад
- •Полюсное регулирование
- •6. Способы электрического торможения ад
- •1) Торможение противовключением
- •2) Динамическое торможение
- •3) Генераторный (рекуперативный) способ с возвратом ээ в питающую сеть
- •29. Электрический привод. Структура и преимущества электропривода. Электродвигатели постоянного тока, их преимущества и недостатки. Устройство и принцип работы.
- •Структурная схема электропривода
- •Устройство двигателя постоянного тока
- •Принцип работы двигателя постоянного тока
- •Моментная характеристика
- •Механическая характеристика
- •Энергетическая (экономическая) характеристика
- •Пуск двигателей постоянного тока
- •Прямой пуск
- •Пуск дпт при пониженном напряжении
- •Реостатный способ пуска дпт
- •Реверсирование двигателей постоянного тока
- •Регулирование частоты вращения двигателей постоянного тока
- •Полюсный способ
- •Структурная схема электропривода
- •Образование электронно - дырочного перехода
- •Свойства электронно - дырочного перехода при наличии внешнего напряжения Включение электронно - дырочного перехода в прямом направлении
- •Включение электронно-дырочного перехода в обратном направлении
- •33. Блок-схема полупроводникового выпрямителя. Одно – и двухполупериодные выпрямители. Электрические схемы и осциллограммы.
2. Конденсатор (активно-ёмкостный r- с элемент) в цепи переменного тока
В конденсаторе с идеальным диэлектриком (идеальный конденсатор) предполагается полное отсутствие тока проводимости и тепловых потерь электрической энергии. В реальном же конденсаторе в отличие от идеального существуют тепловые потери ∆P [Вт], поэтому такой конденсатор может быть представлен на схеме замещения в виде последовательного, а иногда параллельного, соединения активного элемента R , учитывающего тепловые потери в диэлектрике (т.е. нагрев конденсатора - R = ∆P/ I 2 ) и ёмкостного элемента (ёмкости) С [Ф] , связанной с наличием переменного электрического поля в конденсаторе.
При
включении активно-ёмкостной цепи в сеть
переменного тока на напряжение u
в
ней протекает ток i
= Im
Sin
ωt
и
по второму правилу Кирхгофа для мгновенных
значений напряжений можно записать: u
= u
R
+ u
С
,
-
или, переходя к действующим значениям
напряжений, можно записать в векторной
форме: ,
U-напряжение
на зажимах питающей сети (напряжение
цепи),
- U R = I R - напряжение на активном элементе (активная составляющая),
- U С = I X С - напряжение на ёмкостном элементе (ёмкостная составляющая напряжения цепи U или ёмкостное напряжение) отстает по фазе от тока.
Полученные
соотношения можно представить на
плоскости в виде векторной диаграммы:
Векторы
напряжений U,
U
R
= I
R
и
U
С
= I
X
С
образуют прямоугольный треугольник
напряжений
, поэтому можно записать: U
2
= (I
R)2
+
(I
X
С)2
или
-
-откуда
получаем выражение закона Ома для
активно-ёмкостной (R-
С) цепи переменного тока:
, здесь
- полное
сопротивление
активно-ёмкостной (R-
С) цепи.
Из треугольника напряжений можно получить скалярные прямоугольные треугольники - треугольник сопротивлений (если стороны треугольника напряжений разделить на силу тока I) и треугольник мощностей (если стороны треугольника напряжений умножить на силу тока I). Из этих треугольников можно получить дополнительные количественные соотношения, необходимые для расчета электрической цепи:
Понятие об активной, реактивной и полной мощностях.
В цепях переменного тока в связи с периодическим изменением электрического тока энергия электрических и магнитных полей периодически изменяется и между этими полями и источником электрической энергии происходит обратимый периодический процесс обмена электрической энергией. Скорость такого обратимого процесса обмена электрической энергией между источником и электрической цепью характеризуется понятием реактивная мощность Q [ ВАр], (Вольт-Ампер реактивный).
Одновременно в электрической цепи переменного тока происходит необратимый процесс преобразования электрической энергии в тепло, свет и другие виды энергии, т.е. в работу. Скорость такого необратимого процесса преобразования электрической энергии характеризуется понятием активная мощность Р [Вт], (Ватт).
Таким образом, в общем случае в цепи переменного тока одновременно происходят два процесса: процесс преобразования электрической энергии в другие виды (в работу) и процесс обратимого периодического обмена энергией между источником и цепью. Эти два одновременно протекающих процесса, накладываясь друг на друга, создают в цепи сложный единый энергетический процесс, для характеристики которого вводится понятие полная мощность S [ВА], (Вольт-Ампер).
Полученные
энергетические соотношения могут быть
условно представлены на плоскости в
геометрической форме - в виде прямоугольного
треугольника - треугольника
мощностей, из
которого могут быть получены дополнительные
формулы, необходимые для выполнения
электротехнических расчетов.