Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материалы для подготовки к экзамену по электротехнике.doc
Скачиваний:
886
Добавлен:
20.05.2014
Размер:
2.51 Mб
Скачать

Тепловые режимы работы и номинальная мощность двигателя

 

Рис.1. Нагрузочная диаграмма и график зависимости температуры электродвигателя при длительном режиме работы с постоянной номинальной нагрузкой

(т. А - включение нагрузки РНАГР = Р НОМ ; т. В – установление теплового равновесия при Т УСТ = const ; т. С - отключение нагрузки РНАГР = 0 ; т. D - установление теплового равновесия при ТЭД = Т ОС ; t Р - продолжительность работы двигателя с нагрузкой; t О - продолжительность останова двигателя)

 При кратковременной работе двигателя тепловое равновесие не наступает, его температура не достигает установившегося значения ТЭД < Т УСТ = const и в таком случае двигатель постоянно работает в неустановившихся тепловых режимах – либо нагрева, либо остывания (рис. 2).

 

 Рис. 2. Нагрузочная диаграмма и график зависимости температуры электродвигателя при кратковременном режиме работы. t Р - продолжительность работы двигателя с нагрузкой; t О - продолжительность останова двигателя

   Во избежание перегрева и резкого сокращения срока службы электродвигателя для характеристики его теплового режима работы водится понятие допустимой температуры электродвигателя Т ЭД. ДОП , которая в каждом случае определяется качеством (классом нагревостойкости) используемой изоляции его обмоток. Из условия обеспечения работы электродвигателя в допустимом тепловом режиме проектируется и выбирается его номинальная мощность Р НОМ : РНАГР = Р НОМ Т УСТ = Т ЭД. ДОП .

 Номинальная мощность электродвигателя Р НОМ - это наибольшая полезная механическая мощность на валу электродвигателя, при которой обеспечиваются высокие технико-экономические показатели его работы и допустимый тепловой режим (без перегрева), гарантирующий длительный срок службы электродвигателя в течение 15 – 20 лет.

 В зависимости от соотношения фактической мощности нагрузки на валу электродвигателя Р НАГР и его номинальной мощности Р НОМ , т. е. в зависимости от коэффициента загрузки β = Р НАГР / Р НОМ , различают три нагрузочных режима:

1. Номинальный режим: РНАГР = Р НОМ β = 1 характеризуется высокими технико-экономическими показателями работы и обеспечивает длительный срок службы электродвигателя.

2. Режим недогрузки: РНАГР < Р НОМ β < 1 характеризуется более низкими технико-экономическими показателями работы и не рекомендуется для длительной работы.

3. Режим перегрузки: РНАГР > Р НОМ β > 1 характеризуется пониженными технико-экономическими показателями работы и, кроме того, приводит к перегреву электродвигателя, что увеличивает опасность аварийного отключения, резко снижает срок его службы и поэтому практически не допускается.

Выбор мощности электродвигателя для различных нагрузочных режимов

Двигатели производственных механизмов могут работать в различных нагрузочных режимах, т. е. с различной по характеру нагрузкой – постоянной или изменяющейся (переменной) по величине, с разным соотношением времени работы и останова (паузы), с различной частотой пуска, реверсирования, торможения и др.

 В зависимости от теплового режима работы двигателя и характера нагрузки различают следующие наиболее распространенные нагрузочные режимы:

S1 - длительный или продолжительный;

S2 – кратковременный;

S3 - повторно- кратковре­менный.

Для определения характера нагрузки и режима работы производствен­ного механизма строятся так называемые нагрузочные диаграммы, представляющие зависимости момента или мощности нагрузки на валу двигателя от времени, т. е. зависимости M НАГР (t) или P НАГР (t).

Если задана рабочая ( полезная) мощность производствен­ного механизма Р МЕХ, то для приведения ее к мощности на валу двигателя необходимо учесть КПД производствен­ного механизма ( М) и системы механической передачи от механизма к двигателю ( П): Р НАГР = Р МЕХ / М П .

 S1. Длительный (продолжительный) режим работы — это такой режим, в котором двигатель длительно работает с постоянной нагрузкой РНАГР = const ( рис.1) или с изменяющейся ( переменной) во времени РНАГР = variable (рис.3) и установившаяся температура двигателя за время его работы дости­гает допустимого значения Т УСТ = Т ДОП. Этот режим характерен для приводов рольгангов прокатных станов, конвейеров, эскалаторов, дымососов, вентиляторов, на­сосов, компрессоров, мешалок, дробилок, мельниц и др., длительность работы которых состав­ляет часы, сутки, недели.

 При работе в длительном режиме с постоянной нагрузкой по заданной мощности нагрузки на валу двигателя Р НАГР производят выбор номинальной мощности и марки двигателя при заданной частоте вращения по каталогу двигателей серии ПВ –100 ( рассчитанных на длительную работу) по условию:РЭД НОМ = Р НАГР .

 Выбранный по этому условию двигатель будет работать в допустимом тепловом режиме и тем самым обеспечит нормальную длительную работу электропривода. При этом дополнительная проверка двигателя на пусковую и перегрузочную способность при постоянной нагрузке не проводится.

 Если в каталоге нет двигателя с такой номинальной мощностью, то выбирают двигатель с ближайшей большей номинальной мощностью РЭД НОМ > Р НАГР .

 При работе в длительном режиме с переменной нагрузкой (рис.3) выбор номинальной мощности двигателя обычно проводится наиболее простым методом эквивалентной мощности:

1. По нагрузочной диаграмме определяется эквивалентная мощность нагрузки на валу двигателя:

 Рис.3. Нагрузочная диаграмма электродвигателя при длительном режиме работы с переменной нагрузкой

 2. По каталогу двигателей серии ПВ –100 (рассчитанных на длительную работу) выбирают номинальную мощность и типоразмер (марку) двигателя при заданной частоте вращения по условию: РЭД НОМ = Р ЭКВ .

 Если в каталоге нет двигателя с такой номинальной мощностью, то выбирают двигатель с ближайшей большей номинальной мощностью РЭД НОМ > Р НАГР .

 3. При работе двигателя с переменной нагрузкой обязательно необходимо проводить проверку выбранного двигателя на перегрузочную способность.

Двигатели постоянного тока проверяются на перегрузку по току и должны удовлетворять следующему условию:

I НОМ ≥ I МАХ НАГР / ( 2 - 2,5) .

Асинхронные двигатели проверяются на перегрузку по пусковому и максимальному моментам и с учетом коэффициентов запаса должны удовлетворять следующим условиям:

1. λ П М НОМ ≥ К П М П НАГР ;

2. λ М М НОМ ≥ К М М М НАГР ,

здесь М НОМ - номинальный момент асинхронного двигателя,

λ П и λМ - кратность пускового и максимального моментов двигателя,

К П и К М - коэффициент запаса по пусковому и максимальному моментам (обычно принимают равным К = 1,2 - 1,3 ),

М П НАГР и М М НАГР - пусковой и максимальный моменты нагрузки (определяются по заданной нагрузочной диаграмме двигателя по формуле : М = Р / Ω ).

 В случае если выбранный двигатель не проходит по перегрузочной способности, то выбирают следующий за ним двигатель с большей номинальной мощностью и снова проводят проверку этого двигателя на перегрузочную способность.

 S2 . КРАТКОВРЕМЕННЫЙ РЕЖИМ РАБОТЫ - это такой режим, в котором кратковременная работа двигателя с нагрузкой чередуется с длительными остановами, при этом за время рабочего периода его температура не достигает допустимого значения Т ЭД < Т ДОП , а за время останова снижается до температуры среды ТЭД = Т ОС (рис.2). Этот режим характерен для приводов разводных мостов, шлагбаумов, задвижек, заслонок, шиберов и др.

 Для работы в этом режиме выпускаются двигатели специальной серии (так называемые крановые двигатели), рассчитанные на большие кратковременные электрические и механические перегрузки при работе с номинальной мощностью в течение стандартной длительности рабочего периода t СТАНД = 15, 30, 60 и 90 мин.

Выбор номинальной мощности и типоразмера (марки) двигателя при заданной частоте вращения проводится по каталогу двигателей специальной серии по следующим условиям: РЭД НОМ ≥ Р НАГР ,

при продолжительности работы двигателя t Р ≥ t СТАНД .

 Дополнительная проверка выбранного двигателя на пусковую и перегрузочную способность не проводится.

 S3. ПОВТОРНО- КРАТКОВРЕ­МЕННЫЙ РЕЖИМ РАБОТЫ — это такой режим, при котором работа двигателя характеризуется цикличностью, т. е. периодическим чередованием периодов работы двигателя и его остановов. При этом за время рабочих периодов его температура не достигает допустимого значения Т ЭД < Т ДОП , а за время останова не снижается до температуры среды ТЭД > Т ОС при допустимой продолжительности цикла t Ц не более 10 минут (рис.4).

 

Рис. 4. Нагрузочная диаграмма и график зависимости температуры электродвигателя при повторно-кратковременном режиме работы

t Р - продолжительность работы двигателя с нагрузкой;

t О - продолжительность останова двигателя,

t Ц - продолжительность цикла ( не более 10 мин))

 Этот режим характерен для приводов кузнечно-прессового оборудования, подъемно-транспортных устройств, некоторых видов станочного оборудования и др.

Повторно-кратковременный режим характеризуется относительной продолжительностью рабочего периода в цикле - продолжительностью включения (ПВ) - определяемой как выраженное в процентах отношение времени работы двигателя с нагрузкой t Р к продолжительности цикла t Ц :

Для работы в этом режиме выпускаются дви­гатели специальной серии для повторно-кратковременной работы со стандартными значениями продолжительности включения: ПВ 15, 25, 40 и 60 % .

Если же продолжительность цикла t Ц превышает 10 минут и в случае если ПВ > 60 % - выбирают двигатель длительного режима серии ПВ 100 , а если ПВ < 10 - выбирают двигатель крановой серии кратковременного режима.

 В случаях сложного характера нагрузочной диаграммы ( рис. 5) выбор номинальной мощности двигателя обычно проводится наиболее простым методом эквивалентной мощности :

  1. 1.     По нагрузочной диаграмме определяется эквивалентная мощность нагрузки за рабочий период цикла:

 

 Рис. 5. Нагрузочная диаграмма электродвигателя при повторно-кратковременном режиме работы

t i - продолжительность работы двигателя с нагрузкой P i ;

t О i - продолжительность останова двигателя;

t Ц =  (t i + t О i ) - продолжительность цикла ( не более 10 мин) )

 2.     Определяется фактическая продолжительность включения нагрузки:

 

3. Выбор номинальной мощности и марки двигателя при заданной частоте вращения проводится по каталогу дви­гателей серии ПВ 15, 25, 40, 60 по следующим условиям: при совпадении продолжительности включения

ПВ НАГР = ПВ СТАНД

выбирают : РЭД НОМ = Р ЭРПЦ .

 

Если в каталоге нет двигателя с такой номинальной мощностью, то выбирают двигатель с ближайшей большей номинальной мощностью РЭД НОМ > Р ЭРПЦ.

 

4. Если фактическая продолжительность включения нагрузки отличается от стандартного значения ПВ НАГР ≠ ПВ СТАНД , то необходимо пересчитать эквивалентную мощность нагрузки за рабочий период цикла Р ЭРПЦ на ближайшее большее стандартное значение ПВ*СТАНД : .

 После этого выбор номинальной мощности и типоразмера (марки) двигателя при заданной частоте вращения проводится по каталогу дви­гателей серии ПВ 15, 25, 40, 60 по следующим условиям:

при стандартной продолжительности включения ПВ* СТАНД

выбирают: РЭД НОМ = Р* ЭРПЦ .

  Если в каталоге нет двигателя с такой номинальной мощностью, то выбирают двигатель с ближайшей большей номинальной мощностью РЭД НОМ > Р* ЭРПЦ.

 5. При работе двигателя с переменной нагрузкой обязательно необходимо проводить проверку выбранного двигателя на перегрузочную способность.

Двигатели постоянного тока проверяются на перегрузку по току и должны удовлетворять следующему условию: I НОМ ≥ I МАХ НАГР / ( 2 - 2,5) .

 Асинхронные двигатели проверяются на перегрузку по пусковому и максимальному моментам и с учетом коэффициентов запаса должны удовлетворять следующим условиям:

λ П М НОМ ≥ К П М П НАГР ;

λ М М НОМ ≥ К М М М НАГР ,

здесь М НОМ - номинальный момент асинхронного двигателя,

λ П и λМ - кратность пускового и максимального моментов двигателя,

К П и К М - коэффициент запаса по пусковому и максимальному моментам (обычно принимают равным К = 1,2 - 1,3 ),

М П НАГР и М М НАГР - пусковой и максимальный моменты нагрузки (определяются по заданной нагрузочной диаграмме двигателя по формуле : М = Р / Ω ).

 В случае, если выбранный двигатель не проходит по перегрузочной способности, то выбирают следующий за ним двигатель с большей номинальной мощностью и снова проводят проверку этого двигателя на перегрузочную способность.

 Правильный выбор мощности двигателя по приведенным выше методикам определяет режим его работы в условиях допустимого нагрева и является одним из основных условий обеспечения надежной работы электропривода с высокими технико-экономическими показателями в течение 15 – 20 - летнего срока эксплуатации без капитального ремонта.

27. Применение различных типов электродвигателей в электроприводе. Сравнительные характеристики и области применения. Трехфазные асинхронные электродвигатели. Их преимущества и недостатки. Устройство и принцип работы.

Качество работы современного электропривода во многом определяется правильным выбором используемого электрического двигателя, что в свою очередь обеспечивает продолжительную надежную работу электропривода и высокую эффективность технологических и производственных процессов в промышленности, на транспорте, в строительстве и др.

При выборе электрического двигателя для привода производственного механизма, в общем, руководствуются следующими рекомендациями:

1. Исходя из технологических требований, производят выбор электрического двигателя по его техническим характеристикам (по роду тока, номинальным напряжению и мощности, частоте вращения, виду механической характеристики, перегрузочной способности, пусковым, регулировочным и тормозным свойствами др.), а также конструктивное исполнение двигателя по способу монтажа и крепления.

2. Исходя из экономических соображений, выбирают наиболее простой, экономичный и надежный в эксплуатации двигатель, не требующий высоких эксплуатационных расходов и имеющий наименьшие габариты, массу и стоимость.

3. Исходя из условий окружающей среды, в которых будет работать двигатель, а также из требований безопасности работы во взрывоопасной среде, выбирают конструктивное исполнение двигателя по способу защиты.

Правильный выбор типа, исполнения и мощности электрического двигателя определяет не только безопасность, надежность и экономичность работы и длительность срока службы двигателя, но в целом технико-экономические показатели всего электропривода.

 Из всех типов электрических двигателей общепромышленного применения таким требованиям в наибольшей степени отвечают асинхронные двигатели с короткозамкнутым ротором (АДКЗ). Эти двигатели обычно питаются непосредственно от трехфазной сети и являются самыми простыми по конструкции, наиболее надежными в эксплуатации, практически не требуют обслуживания и при одинаковой мощности имеют наименьшие массу, габаритные размеры и стоимость.

По этой причине асинхронные двигатели с короткозамкнутым ротором нашли самое широкое применение во многих отраслях промышленности для приводов различных механизмов: конвейеров, транспортеров, подъемных и поворотных механизмов, толкателей, заслонок, насосов, вентиляторов, компрессоров и т. д. Однако эти двигатели имеют два существенных недостатка: сложность плавного регулирования частоты вращения и высокая кратность (4 - 6) пускового тока по отношению к номинальному. Поэтому двигатели с короткозамкнутым ротором применяются при относительно небольшой частоте включений в нерегулируемом электроприводе малой и средней мощности ( до 50 – 100 кВт) , когда не требуется плавного регулирования частоты вращения или когда может использоваться ступенчатое регулирование (многоскоростные двигатели с изменяемым числом пар полюсов).

 В настоящее время резко возрос интерес к использованию простых, дешевых и экономичных асинхронных двигателей с короткозамкнутым ротором в частотно-регулируемом электроприводе, в котором плавность регулирования и широкий диапазон достигается за счет питания двигателя от тиристорного (транзисторного) преобразователя частоты (ТПЧ). Кроме того, частотно-регулируемый привод заметно улучшает пусковые свойства двигателя – снижает пусковой ток и обеспечивает плавный запуск двигателя, резко снижает электрические и механические ударные нагрузки, поэтому несмотря на высокую стоимость частотно-регулируемый привод все шире применяется в системах тепло-водоснабжения для привода насосов, вентиляторов, в лифтовом хозяйстве и др.

Кроме асинхронных двигателей с короткозамкнутым ротором часто используются асинхронные двигатели с фазным ротором (АДФР), которые позволяют в достаточном диапазоне осуществлять плавное регулирование частоты вращения, но отличаются более сложной конструкцией и имеют значительно большие относительные массы, габариты и стоимость. Кроме того, эти двигатели уступают асинхронным двигателям с короткозамкнутым ротором в простоте управления и надежности в работе, однако обладают хорошими пусковыми свойствами, т. к. с помощью реостата, включенного в роторную цепь, позволяют уменьшить пусковой ток и одновременно увеличить пусковой момент. Этот тип двигателей широко используются при работе в напряженных режимах с частыми пусками и остановами - в механизмах подъемных устройств, конвейеров, транспортеров и др., требующих плавного пуска и регулирования скорости перемещения.

 Другой весьма распространенный в промышленности тип машин переменного тока - синхронные двигатели – отличаются сложной конструкцией и высокой стоимостью, практически не регулируются, однако обладают высокими экономическими характеристиками и применяются в нерегулируемом электроприводе большой мощности (более 50 – 100 кВт) для привода мощных компрессоров, насосов, вентиляторов, дымососов.

В ряде случаев производственные механизмы требуют глубокого и плавного регулирования частоты вращения, высокого качества переходных процессов, больших пусковых и тормозных моментов. В этих случаях при соответствующем технико-экономическом обосновании чаще всего применяются различные типы двигателей постоянного тока, питающихся от преобразователей переменного тока. В подъемных установках и кранах используются чаще всего двигатели последовательного или смешанного возбуждения, имеющие большой пусковой момент и наиболее подходящую характеристику. Двигатели постоянного тока независимого возбуждения используются в автоматизированных электроприводах, когда необходимо глубокое регулирование частоты вращения при высоком качестве переходных процессов.

Асинхронный двигатель (АД) – это электрическая машина, предназначенная для преобразования ЭЭ в механическую, работа которой основана на использовании вращающегося магнитного поля (ВМП), и частота вращения которой n2 несколько меньше, чем синхронная частота вращения ВМП n1 (n2 < n1).

Достоинства АД:

- простота конструкции; низкая стоимость; надежность и безопасность в работе; высокие эксплуатационные качества (практически не требуют обслуживания); жесткая механическая характеристика; достаточно высокая экономичность мощных АД.

Недостатки АД: АД – основные потребители реактивной индуктивной мощности (65 - 70%), что приводит к снижению коэффициента мощности cos φ потребителя ЭЭ. В связи с этим оплата получаемой ЭЭ производится по повышенному тарифу или для снижения таких расходов требуется установка соответствующих компенсирующих устройств (возрастают капитальные затраты); большой пусковой ток – кратность ;

- низкие пусковые свойства (низкий пусковой момент) ;

- сложность регулирования частоты вращения, поэтому АД обычно используют в нерегулируемом ЭП малой и средней мощности (P <= 50 - 100 кВт).

Асинхронный двигатель состоит из двух частей, разделенных тонким воздушным зазором:

1. Статор – это неподвижная часть АД, он состоит из алюминиевого или чугунного корпуса, внутри которого расположен полый цилиндрический ферромагнитный сердечник.

2. Ротор – это вращающаяся часть АД, он представляет собой сплошной ферромагнитный цилиндр, укрепленный на валу машины.

Сердечник статора набирается из отдельных листов электротехнической стали толщиной 0,35 - 0,5 мм, изолированных друг от друга слоем лака для уменьшения потерь от вихревых токов при перемагничивании. Он запрессовывается в станину. Станина выполняется литой, из немагнитного материала. Чаще всего станину выполняют из чугуна или алюминия. На внутренней поверхности листов, из которых выполняется сердечник статора, имеются пазы, в которые закладывается трёхфазная обмотка. Обмотка статора состоит из трёх отдельных частей, называемых фазами. Начала фаз обозначаются буквами с1, с2, с3, а концы – с4, с5, с6. Обмотка статора выполняется в основном из изолированного медного провода круглого или прямоугольного сечения, реже из алюминия.

Начала и концы фаз выведены на клеммник , закреплённый на станине. Обмотка статора может быть соединена по схеме звезда или треугольник. Выбор схемы соединения обмотки статора зависит от линейного напряжения сети и паспортных данных двигателя. В паспорте трёхфазного двигателя задаются линейные напряжения сети и схема соединения обмотки статора.

Сердечник ротора набирается из листов электротехнической стали, на внешней стороне которых имеются пазы, в которые закладывается обмотка ротора. Обмотка ротора бывает двух видов: короткозамкнутая и фазная. Поэтому асинхронные двигатели бывают с короткозамкнутым ротором и фазным ротором.

Короткозамкнутая обмотка ротора состоит из стержней, которые закладываются в пазы сердечника ротора. С торцов эти стержни замыкаются торцевыми кольцами. Такая обмотка напоминает “беличье колесо”, её называют “беличьей клеткой”. Двигатель с короткозамкнутым ротором не имеет подвижных контактов. За счёт этого такие двигатели обладают высокой надёжностью. Обмотка ротора выполняется из меди, алюминия, латуни и других материалов.

У фазного ротора обмотка выполняется трёхфазной, аналогично обмотке статора, с тем же числом пар полюсов. Витки обмотки закладываются в пазы сердечника ротора и соединяются по схеме звезда. Концы каждой фазы соединяются с контактными кольцами, закреплёнными на валу ротора, и через щётки выводятся во внешнюю цепь. Контактные кольца изготавливают из латуни или стали, они должны быть изолированы друг от друга и от вала. В качестве щёток используют металлографитовые щётки, которые прижимаются к контактным кольцам с помощью пружин щёткодержателей, закреплённых неподвижно в корпусе машины.

Основное назначение обмотки статора – создание в машине вращающего магнитного поля.

Для получения вращающего магнитного поля должны соблюдаться следующие условия: наличие не менее двух обмоток, токи в обмотках должны отличаться по фазе и оси обмоток должны быть смещены в пространстве.

Рассмотрим магнитное поле, которое создаётся с помощью трёхфазной обмотки, имеющей одну пару полюсов р=1. Оси обмоток фаз смещены в пространстве на угол 120°. К трём катушкам подключается три одинаковых напряжения, которые разнятся только фазами:

UA=Umsin(ωt) . UB=Umsin(ωt+2π3) .

UC=Umsin(ωt+4π3)

Вначале напряжение на А максимально, два других В и С не равны 0, но они гораздо меньше и имеют другое направление. Магнитное поле расположено вдоль оси катушки. Суммарное магнитное поле - укороченный вектор А вдоль оси А. На фазе А напряжение достигает амплитудного значения. Через треть периода магнитное поле максимально на фазе В, суммарное магнитное поле - укороченный вектор В вдоль оси В. Ещё через треть периода магнитное поле максимально на фазе С, суммарное магнитное поле – укороченный вектор С вдоль оси С. Далее всё повторяется. За один период магнитное поле, оставаясь неизменным, повернулось на один полный оборот. Таким образом, трёхфазная обмотка статора создаёт в машине круговое вращающееся магнитное поле. Направление вращения магнитного поля зависит от порядка чередования фаз. Частота вращения магнитного поля n1 зависит от частоты питающей сети f и числа пар полюсов обмотки статора р: n1=60 fp

Обмотка статора создаёт магнитное поле, вращающееся с частотой n1. Это поле будет наводить согласно закону электромагнитной индукции в обмотке ротора ЭДС. Направление ЭДС определяется по правилу правой руки: силовые линии должны входить в ладонь, а большой палец нужно направить по направлению движения проводника, т.е. ротора, относительно магнитного поля. В обмотке ротора появится ток, направление которого будет совпадать с направлением ЭДС. В результате взаимодействия обмотки ротора с током и вращающегося магнитного поля возникает электромагнитная сила F. Направление силы определяется по правилу левой руки: силовые линии должны входить в ладонь, четыре пальца – по направлению тока в обмотке ротора. Электромагнитная сила создаст вращающий момент, под действием которого ротор начнёт вращаться с частотой n2. Направление вращения ротора совпадает с направлением вращения магнитного поля.

Частота вращения ротора двигателя  n2 всегда меньше частоты вращения вращающегося магнитного поля  n1 . Причина асинхронного вращения ротора заключается в том, что если ротор вращается синхронно с частотой поля   n2 = n1, то его обмотка не пересекается магнитным полем и в ней не наводится ЭДС и отсутствует ток. При синхронном вращении ток в роторе отсутствует и электромагнитный момент двигателя равен нулю. К валу двигателя всегда приложен некоторый тормозной момент трения или нагрузки, под действием которого двигатель замедляет свой ход до тех пор, пока в роторе не появится ток, необходимый для обеспечения соответствующего вращающего момента, после чего двигатель продолжит вращаться с установившейся частотой вращения  меньше синхронной  n2 < n.

Соседние файлы в предмете Электротехника