
- •1). Электрический ток. Сила тока
- •2). Электрическая цепь
- •4). Закон Ома
- •5). Работа и мощность в электрической цепи
- •2. Электрическая цепь постоянного тока. Основные элементы и их условно-графические обозначения. Методы расчета цепей постоянного тока (правила Кирхгофа, метод эквивалентных преобразований).
- •Закон Ома для участка цепи
- •Закон Ома для всей цепи
- •Первый закон Кирхгофа
- •Второй закон Кирхгофа
- •3. Основные электроизмерительные приборы. Способы измерения электрических величин и расчет параметров элементов электрической цепи.
- •4. Основные электроизмерительные приборы. Схемы включения. Расширение пределов измерения (шунты, добавочные резисторы). Особенности работы с многопредельными приборами.
- •5. Классы точности электроизмерительных приборов. Погрешность электрических измерений и способы ее минимизации при выборе измерительного прибора.
- •Погрешности электрических измерений
- •Особенности работы с многопредельными приборами.
- •Основные характеристики (параметры) переменного тока
- •Действующее значение переменного тока
- •Применение комплексных чисел для анализа цепей переменного тока
- •9. Идеальные элементы (резистивный, индуктивный и емкостный) в цепи переменного тока. Определения, основные соотношения и особенности цепи. Понятие об активной, реактивной и полной мощностях.
- •10. Реальная катушка и реальный конденсатор в цепи переменного тока. Определения, основные соотношения и особенности цепи. Понятие об активной, реактивной и полной мощностях.
- •1. Катушка (активно-индуктивный r- l элемент) в цепи переменного тока
- •2. Конденсатор (активно-ёмкостный r- с элемент) в цепи переменного тока
- •11. Последовательная цепь переменного тока, содержащая резистивный, индуктивный и емкостный элементы. Основные соотношения и особенности цепи.
- •12. Расчет последовательной цепи переменного тока. Схема замещения. Резонанс напряжений. Особенности цепи.
- •Явление резонанса напряжений
- •Особенности цепи при резонансе напряжений:
- •13. Расчет параллельной цепи переменного тока. Последовательная эквивалентная схема замещения. Резонанс токов. Особенности цепи.
- •1. Определяются комплексные сопротивления ветвей и токи в ветвях
- •2. Определяются комплексные проводимости и параметры треугольников проводимостей ветвей
- •V1. Построение векторной диаграммы параллельной цепи
- •14. Преимущества трехфазных систем. Трех- и четырехпроводные системы. Основные определения. Соединение фаз потребителя по схеме «Звезда» и «Треугольник» (схемы и основные соотношения).
- •Электрическая схема трёхфазной четырёхпроводной лэп
- •Способы соединения фаз потребителя и режимы работы трёхфазной цепи
- •Соединение фаз потребителя по схеме «звезда» (трёхпроводная система)
- •15. Трехфазные цепи. Основные определения. Соединение фаз потребителя по схеме «Звезда» (основные определения и соотношения). Нейтральный провод. Мощность в трехфазной цепи.
- •Электрическая схема трёхфазной четырёхпроводной лэп
- •Способы соединения фаз потребителя и режимы работы трёхфазной цепи
- •Соединение фаз потребителя по схеме «звезда» (трёхпроводная система)
- •Соединение фаз потребителя по схеме «звезда с нейтралью» (четырёхпроводная система)
- •Мощность трехфазной цепи
- •16. Трехфазные цепи. Основные определения. Соединение фаз потребителя по схеме «Треугольник» (основные определения и соотношения). Мощность в трехфазной цепи.
- •Электрическая схема трёхфазной четырёхпроводной лэп
- •Мощность трехфазной цепи
- •17. Преимущества трехфазных систем. Мощность в трехфазной цепи. Способы измерения активной и реактивной мощности в трехфазных цепях.
- •Мощность трехфазной цепи
- •2. Измерение активной мощности методом двух ваттметров
- •3. Измерение активной мощности методом трёх ваттметров
- •4. Измерение активной мощности с помощью трёхфазного ваттметра
- •1. Измерение реактивной мощности методом одного ваттметра
- •2. Измерение реактивной мощности методом двух и трёх ваттметров
- •Передача электрической энергии и потери мощности в лэп
- •Передача электрической энергии и потери мощности в лэп
- •Мероприятия по снижению реактивной мощности потребителей
- •Передача электрической энергии и потери мощности в лэп
- •Мероприятия по снижению реактивной мощности потребителей
- •Передача электрической энергии и потери мощности в лэп
- •Мероприятия по компенсации реактивной мощности потребителей
- •Определение мощности компенсирующих устройств
- •Особенности поведения ферромагнитных материалов в переменном магнитном поле
- •Явление гистерезиса
- •23. Применение ферромагнитных материалов в электротехнике. Магнитно-мягкие и магнитно-твердые материалы. Потери энергии при перемагничивании ферромагнетиков и способы их снижения.
- •24. Передача электрической энергии и потери мощности в лэп. Цель трансформации напряжения. Устройство и принцип работы трансформатора.
- •25. Режимы работы и кпд трансформатора. Опыты холостого хода и короткого замыкания. Внешняя характеристика трансформатора. Режимы работы трансформатора
- •Кпд трансформатора. Потери мощности и кпд трансформатора
- •Внешняя характеристика трансформатора
- •26. Электрический привод. Структура и преимущества электропривода. Нагрев и тепловой режим работы электродвигателя. Номинальная мощность. Характеристика нагрузочных режимов работы электродвигателя.
- •Структурная схема электропривода
- •Тепловые режимы работы и номинальная мощность двигателя
- •28. Основные характеристики трехфазных асинхронных электродвигателей. Способы пуска и регулирования частоты вращения. Реверсирование и способы электрического торможения асинхронных электродвигателей.
- •1) Прямой пуск
- •2) Пуск ад при пониженном напряжении
- •4. Реверсирование ад (изменение направления вращения)
- •Частотное регулирование ад
- •Полюсное регулирование
- •6. Способы электрического торможения ад
- •1) Торможение противовключением
- •2) Динамическое торможение
- •3) Генераторный (рекуперативный) способ с возвратом ээ в питающую сеть
- •29. Электрический привод. Структура и преимущества электропривода. Электродвигатели постоянного тока, их преимущества и недостатки. Устройство и принцип работы.
- •Структурная схема электропривода
- •Устройство двигателя постоянного тока
- •Принцип работы двигателя постоянного тока
- •Моментная характеристика
- •Механическая характеристика
- •Энергетическая (экономическая) характеристика
- •Пуск двигателей постоянного тока
- •Прямой пуск
- •Пуск дпт при пониженном напряжении
- •Реостатный способ пуска дпт
- •Реверсирование двигателей постоянного тока
- •Регулирование частоты вращения двигателей постоянного тока
- •Полюсный способ
- •Структурная схема электропривода
- •Образование электронно - дырочного перехода
- •Свойства электронно - дырочного перехода при наличии внешнего напряжения Включение электронно - дырочного перехода в прямом направлении
- •Включение электронно-дырочного перехода в обратном направлении
- •33. Блок-схема полупроводникового выпрямителя. Одно – и двухполупериодные выпрямители. Электрические схемы и осциллограммы.
Пуск дпт при пониженном напряжении
Пуск при пониженном напряжении применяется для пуска двигателей средней и большой мощности с целью снижения пускового тока и устранения связанных с этим недостатков прямого пуска.
При этом способе обмотка возбуждения при выведенном регулировочном реостате RРР = 0 включена на номинальное напряжение, а на обмотку якоря в момент пуска подается от регулируемого источника питания пониженное по сравнению номинальным напряжение ΔU < Uном . В процессе разгона двигателя напряжение на якоре плавно повышают и после окончания пуска якорь двигателя подключается на номинальное напряжение питающей сети U = Uном и двигатель выходит на естественную рабочую характеристику.
Такой способ сложен и дорог, однако при этом снижается пусковой ток до допустимой величины
IЯ П / IЯ ном ≈ 2 – 2,5 , что позволяет двигателю развивать достаточный пусковой момент и в значительной степени устраняет недостатки прямого пуска.
Реостатный способ пуска дпт
В настоящее время наибольшее распространение получил реостатный способ пуска - обмотка возбуждения при выведенном регулировочном реостате RРР = 0 включена на номинальное напряжение, а для ограничения пускового тока в цепь якоря последовательно с обмоткой якоря двигателя включается специальный пусковой реостат RПР .
Сопротивление пускового реостата выбирают таким, чтобы пусковой ток не превышал допустимого значения
IЯП = (U - E)/ (RЯ + RПР) ≤ (2 – 2,5) IЯ ном .
В момент подачи напряжения на двигатель при замыкании пускателя QF обмотка возбуждения включается в сеть, а ручка пускового реостата находится в исходном положении «0», в котором цепь якоря разомкнута. Для запуска двигателя ручка пускового реостата переводится в положение «1» и двигатель запускается при полностью включённом реостате, что обеспечивает заданное снижение пускового тока якоря. В процессе разгона двигателя пусковой реостат ступенями выводится (положения 1 → 2 → 3) и после окончания пуска реостат полностью выведен (положение 3, RПР = 0), а двигатель выходит на естественную (безреостатную) рабочую характеристику.
Следует отметить, что реостат, включённый последовательно в цепь якоря и рассчитанный на длительную работу, может использоваться как в качестве пускового RПР, так и в качестве регулировочного R*.
Реверсирование двигателей постоянного тока
Изменение направления вращения якоря двигателя можно осуществить одним из двух способов:
1. Изменением полярности включения в сеть обмотки якоря;
2. Изменением полярности включения в сеть обмотки возбуждения.
При реверсировании двигателя под напряжением применяется только первый способ - обмотка возбуждения остаётся включённой в питающую сеть, а переключатель QF из положения 1-1 переводится в положение 2-2, в результате чего обмотка якоря отключается от сети и снова включается в сеть с изменённой полярностью.
Второй способ при реверсировании двигателя под напряжением не применяется, поскольку при отключении от сети обмотки возбуждения в ней наводится значительная ЭДС самоиндукции е = - d Ф /d t , опасная для целостности изоляции обмотки.