
- •1). Электрический ток. Сила тока
- •2). Электрическая цепь
- •4). Закон Ома
- •5). Работа и мощность в электрической цепи
- •2. Электрическая цепь постоянного тока. Основные элементы и их условно-графические обозначения. Методы расчета цепей постоянного тока (правила Кирхгофа, метод эквивалентных преобразований).
- •Закон Ома для участка цепи
- •Закон Ома для всей цепи
- •Первый закон Кирхгофа
- •Второй закон Кирхгофа
- •3. Основные электроизмерительные приборы. Способы измерения электрических величин и расчет параметров элементов электрической цепи.
- •4. Основные электроизмерительные приборы. Схемы включения. Расширение пределов измерения (шунты, добавочные резисторы). Особенности работы с многопредельными приборами.
- •5. Классы точности электроизмерительных приборов. Погрешность электрических измерений и способы ее минимизации при выборе измерительного прибора.
- •Погрешности электрических измерений
- •Особенности работы с многопредельными приборами.
- •Основные характеристики (параметры) переменного тока
- •Действующее значение переменного тока
- •Применение комплексных чисел для анализа цепей переменного тока
- •9. Идеальные элементы (резистивный, индуктивный и емкостный) в цепи переменного тока. Определения, основные соотношения и особенности цепи. Понятие об активной, реактивной и полной мощностях.
- •10. Реальная катушка и реальный конденсатор в цепи переменного тока. Определения, основные соотношения и особенности цепи. Понятие об активной, реактивной и полной мощностях.
- •1. Катушка (активно-индуктивный r- l элемент) в цепи переменного тока
- •2. Конденсатор (активно-ёмкостный r- с элемент) в цепи переменного тока
- •11. Последовательная цепь переменного тока, содержащая резистивный, индуктивный и емкостный элементы. Основные соотношения и особенности цепи.
- •12. Расчет последовательной цепи переменного тока. Схема замещения. Резонанс напряжений. Особенности цепи.
- •Явление резонанса напряжений
- •Особенности цепи при резонансе напряжений:
- •13. Расчет параллельной цепи переменного тока. Последовательная эквивалентная схема замещения. Резонанс токов. Особенности цепи.
- •1. Определяются комплексные сопротивления ветвей и токи в ветвях
- •2. Определяются комплексные проводимости и параметры треугольников проводимостей ветвей
- •V1. Построение векторной диаграммы параллельной цепи
- •14. Преимущества трехфазных систем. Трех- и четырехпроводные системы. Основные определения. Соединение фаз потребителя по схеме «Звезда» и «Треугольник» (схемы и основные соотношения).
- •Электрическая схема трёхфазной четырёхпроводной лэп
- •Способы соединения фаз потребителя и режимы работы трёхфазной цепи
- •Соединение фаз потребителя по схеме «звезда» (трёхпроводная система)
- •15. Трехфазные цепи. Основные определения. Соединение фаз потребителя по схеме «Звезда» (основные определения и соотношения). Нейтральный провод. Мощность в трехфазной цепи.
- •Электрическая схема трёхфазной четырёхпроводной лэп
- •Способы соединения фаз потребителя и режимы работы трёхфазной цепи
- •Соединение фаз потребителя по схеме «звезда» (трёхпроводная система)
- •Соединение фаз потребителя по схеме «звезда с нейтралью» (четырёхпроводная система)
- •Мощность трехфазной цепи
- •16. Трехфазные цепи. Основные определения. Соединение фаз потребителя по схеме «Треугольник» (основные определения и соотношения). Мощность в трехфазной цепи.
- •Электрическая схема трёхфазной четырёхпроводной лэп
- •Мощность трехфазной цепи
- •17. Преимущества трехфазных систем. Мощность в трехфазной цепи. Способы измерения активной и реактивной мощности в трехфазных цепях.
- •Мощность трехфазной цепи
- •2. Измерение активной мощности методом двух ваттметров
- •3. Измерение активной мощности методом трёх ваттметров
- •4. Измерение активной мощности с помощью трёхфазного ваттметра
- •1. Измерение реактивной мощности методом одного ваттметра
- •2. Измерение реактивной мощности методом двух и трёх ваттметров
- •Передача электрической энергии и потери мощности в лэп
- •Передача электрической энергии и потери мощности в лэп
- •Мероприятия по снижению реактивной мощности потребителей
- •Передача электрической энергии и потери мощности в лэп
- •Мероприятия по снижению реактивной мощности потребителей
- •Передача электрической энергии и потери мощности в лэп
- •Мероприятия по компенсации реактивной мощности потребителей
- •Определение мощности компенсирующих устройств
- •Особенности поведения ферромагнитных материалов в переменном магнитном поле
- •Явление гистерезиса
- •23. Применение ферромагнитных материалов в электротехнике. Магнитно-мягкие и магнитно-твердые материалы. Потери энергии при перемагничивании ферромагнетиков и способы их снижения.
- •24. Передача электрической энергии и потери мощности в лэп. Цель трансформации напряжения. Устройство и принцип работы трансформатора.
- •25. Режимы работы и кпд трансформатора. Опыты холостого хода и короткого замыкания. Внешняя характеристика трансформатора. Режимы работы трансформатора
- •Кпд трансформатора. Потери мощности и кпд трансформатора
- •Внешняя характеристика трансформатора
- •26. Электрический привод. Структура и преимущества электропривода. Нагрев и тепловой режим работы электродвигателя. Номинальная мощность. Характеристика нагрузочных режимов работы электродвигателя.
- •Структурная схема электропривода
- •Тепловые режимы работы и номинальная мощность двигателя
- •28. Основные характеристики трехфазных асинхронных электродвигателей. Способы пуска и регулирования частоты вращения. Реверсирование и способы электрического торможения асинхронных электродвигателей.
- •1) Прямой пуск
- •2) Пуск ад при пониженном напряжении
- •4. Реверсирование ад (изменение направления вращения)
- •Частотное регулирование ад
- •Полюсное регулирование
- •6. Способы электрического торможения ад
- •1) Торможение противовключением
- •2) Динамическое торможение
- •3) Генераторный (рекуперативный) способ с возвратом ээ в питающую сеть
- •29. Электрический привод. Структура и преимущества электропривода. Электродвигатели постоянного тока, их преимущества и недостатки. Устройство и принцип работы.
- •Структурная схема электропривода
- •Устройство двигателя постоянного тока
- •Принцип работы двигателя постоянного тока
- •Моментная характеристика
- •Механическая характеристика
- •Энергетическая (экономическая) характеристика
- •Пуск двигателей постоянного тока
- •Прямой пуск
- •Пуск дпт при пониженном напряжении
- •Реостатный способ пуска дпт
- •Реверсирование двигателей постоянного тока
- •Регулирование частоты вращения двигателей постоянного тока
- •Полюсный способ
- •Структурная схема электропривода
- •Образование электронно - дырочного перехода
- •Свойства электронно - дырочного перехода при наличии внешнего напряжения Включение электронно - дырочного перехода в прямом направлении
- •Включение электронно-дырочного перехода в обратном направлении
- •33. Блок-схема полупроводникового выпрямителя. Одно – и двухполупериодные выпрямители. Электрические схемы и осциллограммы.
Электрическая схема трёхфазной четырёхпроводной лэп
Здесь: A-N; B-N; C-N – фазы генератора,
а-n; b-n; c-n – фазы потребителя.
Провода, соединяющие начала фаз генератора и потребителя: L 1 (А-а). L 2 (В-b) и L 3 (C-c) – называются линейными проводами (фазы ЛЭП), а токи в них также называются линейными токами IA , IB , IC . На электрических схемах за условное положительное направление линейных токов принято направление от генератора к потребителю.
Провод
N,
соединяющий нейтральные точки генератора
и потребителя N-n
– называется нейтральным
проводом (нейтралью).
Ток в этом проводе называется нейтральным
током и
направлен от потребителя к генератору,
поэтому в соответствии с первым правилом
Кирхгофа: .
Напряжения между линейными проводами (фазами ЛЭП) называются линейными напряжениями UAB ; UBC ; UCA . Условное положительное направление линейных напряжений указано на схеме.
Напряжение между началом и концом фазы потребителя (нейтральной точкой) называется фазным напряжением Uа , Ub , Uc . Ток, протекающий в фазе потребителя, называется фазным током Iа , Ib , Ic . Условное положительное направление фазных напряжений и токов принято от начала к концу фазы.
Соединение фаз потребителя по схеме «треугольник» (трёхпроводная система)
Рассмотрим соотношения между линейными и фазными токами и напряжениями в трёхпроводной системе «треугольник» для различных режимов.
UЛ = U Ф.
и
сдвинуты по фазе на 1200
.
Соотношение между линейными и фазными токами можно найти по первому правилу Кирхгофа для вершин треугольника (а, в, с):
Из
этих уравнений также следует, что .
В
случае симметричной
нагрузки
в каждой фазе нагрузки протекают равные
по величине токи
и сдвинутые по фазе на 1200,
т.е. возникает симметричная система
фазных токов, что приводит к появлению
симметричной системы линейных токов:
.
При
симметричной
нагрузке
в соединении треугольник между линейными
и фазными токами существует простое
количественное соотношение:
Л
I
Ф
или I
ф
= I
Л
/
.
В
случае несимметричной
нагрузки
вследствие различия фазных сопротивлений
токи в фазах потребителя будут различны
и также будут различны линейные токи,
что может приводить к сильной токовой
перегрузке в отдельных линиях питающей
сети.
При
соединении фаз потребителя в треугольник
при любой нагрузке
система линейных и фазных напряжений
сохраняется симметричной:UЛ
= U
Ф
, .
При этом напряжения на фазах всегда остаются одинаковыми и соответствуют номинальному значению потребителя, поэтому режим работы фазных потребителей по напряжению не нарушается при любом характере нагрузки.
Мощность трехфазной цепи
Мощность трехфазной цепи – это сумма соответствующих мощностей всех трех фаз (потерями мощности в нейтральном проводе обычно пренебрегают):
Как
и в однофазной цепи активная, реактивная
и полная мощности трёхфазной цепи
связаны соотношением: .
Мощность любой из фаз выражается обычной формулой:
.
В случае симметричной нагрузки мощности всех трёх фаз соответственно равны:
и
для мощности трёхфазной цепи можно
записать:
.
В
трёхфазной цепи при симметричной
нагрузке:
,
поэтому
для мощности трёхфазной цепи можно
записать:
Кроме
того, при симметричной нагрузке известны
соотношения между линейными и фазными
напряжениями и токами: I
Л
= I
Ф
, U
Л
U
Ф
- при
соединении по схеме «звезда», I
Л
I
Ф
, U
Л
= U
Ф
- при
соединении по схеме «треугольник».
После
подстановки этих выражений в формулу
мощности трёхфазной цепи в общем случае
при симметричной нагрузке получаем:
.
В
случае несимметричной нагрузки мощность
трёхфазной цепи следует находить как
сумму соответствующих мощностей всех
трёх фаз (т.е. как сумму соответствующих
фазных мощностей):