
- •1. Понятие о минерале. Основные задачи минералогии. История классификации минералов. Принципы, лежащие в основе современной классификации минералов.
- •2.Кристаллические и аморфные вещества. Кристаллическая структура минералов. Типы структур по характеру сочетания структурных единиц.
- •3.Плотнейшие шаровые упаковки. Шариковые и полиэдрические модели представления структуры минералов. Понятия о координации, координационном числе и координационном полиэдре.
- •4.Типы химической связи в минералах. Примеры.
- •7.Твердые растворы. Распад твердых растворов. Интерметаллические соединения.
- •9.Графические способы представления химических составов минералов. Изображение бинарных и тройных систем
- •10.Полиморфизм и политипия. Типы полиморфных переходов. Примеры
- •12. Оптические свойства минералов: прозрачность, цвет и природа окраски, преломление света и блеск, люминесценция. Диагностическое и генетическое значение оптических свойств минералов.
- •14. Понятия о парагенезисе и минеральной ассоциации. Примеры.
- •15.Кристаллохимическая классификация силикатов. Зависимость диагностических свойств силикатов и алюмосиликатов от кристаллической структуры и химического состава.
- •16.Силикаты с островной структурой (орто-, диорто-, кольцевые силикаты). Химическая и структурная характеристика, общие свойства.
- •17. Островные силикаты без добавочных анионов. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •18. Островные силикаты с добавочными анионами. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •19.Кольцевые силикаты. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •20. Силикаты с цепочечной структурой. Пироксены и пироксеноиды. Химическая и структурная характеристика, общие свойства.
- •21.Магнезиально-железистые пироксены. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •22. Кальциевые и натровые пироксены. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •23. Силикаты с ленточной структурой. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •24. Силикаты и алюмосиликаты со слоистой структурой. Химическая и структурная характеристика, общие свойства.
- •25. Минералы группы слюд. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование. Группа слюд.
- •26.Алюмосиликаты с каркасной структурой. Химическая и структурная характеристика, генезис, общие свойства.
- •27.Минералы группы полевых шпатов. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •28.Минералы группы цеолитов. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •29. Самородные элементы. Краткая химическая и структурная характеристика. Общие свойства самородных металлов и неметаллов.
- •31. Полиморфные модификации углерода. Графит и алмаз: химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •32.Сульфиды и их аналоги. Основы классификации, краткая химическая и структурная характеристика, общие свойства.
- •33. Простые сульфиды. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •34. Дисульфиды и их аналоги. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •35. Окислы и гидроокислы. Основы классификации, краткая химическая и структурная характеристика.
- •36. Простые окислы. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •37. Полиморфные модификации SiO2. Кварц, его разновидности, химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •38. Сложные окислы. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •39. Гидроокислы. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •40. Карбонаты и нитраты. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование. Морфотропия в карбонатах.
- •41. Сульфаты. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •42. Фосфаты, арсенаты, ванадаты. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •43. Вольфраматы, молибдаты, хроматы. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •44. Бораты. Принципы классификации, химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •45. Галогениды. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •46.Классификация процессов минералообразования.
- •47. Магматический процесс минералообразования. Краткая характеристика, минеральные ассоциации. Ряд Боуэна.
- •48. Пегматитовый процесс минералообразования. Краткая характеристика, минеральные ассоциации.
- •49.Метасоматические процессы минералообразования. Краткая характеристика, минеральные ассоциации.
- •Гидротермальный процесс минералообразования. Краткая характеристика, минеральные ассоциации.
- •51.Осадочный процесс минералообразования. Краткая характеристика, минеральные ассоциации.
- •52. Минералообразование при процессах выветривания магматических горных пород и гидротермальных рудных жил. Краткая характеристика, минеральные ассоциации.
- •53. Метаморфический процесс минералообразования (в том числе импактный). Краткая характеристика, минеральные ассоциации.
- •54. Типоморфизм минералов. Примеры зависимости химического состава, морфологии и физических свойств минералов от условий их образования.
16.Силикаты с островной структурой (орто-, диорто-, кольцевые силикаты). Химическая и структурная характеристика, общие свойства.
Островными называются такие силикаты, в кристаллической решетке которых присутствуют разобщенные «островки» — кремнекислородные тетраэдры, одиночные или спаренные.
В подкласс островных силикатов включаются ортосиликаты, содержащие изолированные тетраэдры [SiO4]4-; диортосиликаты, содержащие сдвоенные тетраэдры состава [Si2O7]6-, а также ортодиортосиликаты, в которых присутствуют одновременно и одиночные, и сдвоенные кремнекислородные тетраэдры.
Для островных силикатов характерны: высокая твердость, часто изометрические формы кристаллов, сравнительно большой удельный вес.
Окраска их обусловлена присутствием ионов-хромофоров — Fe2+, Fe3+, Со2+, Ni2+, Mn2+, Cr3+, Ti4+; если такие ионы отсутствуют, минералы бесцветны или окрашены в белый цвет, иногда со слабым цветным оттенком. Ведущую роль в окраске ортосиликатов играет взаимное замещение Mg и Fe. При разложении в кислотах островные силикаты дают студенистый гель (коллоид) кремнезема.
Для силикатов со сдвоенными тетраэдрами [Si2 O7]6- характерны более удлиненные (столбчатые и шестоватые) призматические, а также уплощенные и таблитчатые кристаллы.
Устойчивость орто- и диортосиликатов по отношению к выветриванию во многом зависит от содержания в них железа, особенно закисного. Безжелезистые или маложелезистые ортосиликаты (хризолит и др.) обычно весьма устойчивы в поверхностных условиях.
17. Островные силикаты без добавочных анионов. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
Силикаты и алюмосиликаты представляют собой обширную группу минералов. Для них характерен сложный химический состав и изоморфные замещения одних элементов и комплексов элементов другими. Главными химическими элементами, входящими в состав силикатов, являются Si, O, Al, Fe2+, Fe3+, Mg, Mn, Ca, Na, K, а также Li, B, Be, Zr, Ti, F, H, в виде (OH)1− или H2O и др.
В основе структурного строения всех силикатов лежит тесная связь кремния и кислорода; эта связь исходит из кристаллохимического принципа, а именно из отношения радиусов ионов Si (0.39Å) и O (1.32Å). Каждый атом кремния окружён тетраэдрически расположенными вокруг него атомами кислорода. Таким образом, в основе всех силикатов находятся кислородные тетраэдры или группы [SiO4]3, которые различно сочетаются друг с другом. В зависимости от того, как сочетаются между собой кремнекислородные тетраэдры, различают следующие структурные типы силикатов:
1. Островные силикаты, то есть силикаты с изолированными тетраэдрами [SiO4]4− и изолированными группами тетраэдров: а) силикаты с изолированными кремнекислородными тетраэдрами. Их радикал [SiO4]4−, так как каждый их четырёх кислородов имеет одну валентность. Между собой эти тетраэдры непосредственно не связаны, связь происходит через катионы; б) Островные силикаты с добавочными анионами О2−, ОН1−, F1− и др. в) Силикаты со сдвоенными тетраэдрами. Отличаются обособленными парами кремнекислородных тетраэдров [Si2O7]6−. Один из атомов кислорода у них общий, остальные связаны с катионами. г) Кольцевые силикаты. Характеризуются обособлением трёх, четырёх или шести групп кремнекислородных тетраэдров, образующих кроме простых колец (см. Схему в, г), также и «двухэтажные». Радикалы их [Si3O9]6−, [Si4O12]8−, [Si6O18]2−, [Si12O30]18−. Представители: оливины, гранаты, циркон, титанит, топаз, дистен, андалузит, ставролит, везувиан, каламин, эпидот, цоизит, ортит, родонит, берилл, кордиерит, турмалин и др.
2. Цепочечные силикаты, силикаты с непрерывными цепочками из кремнекислородных тетраэдров (см. Схему, д, е). Тетраэдры сочленяются в виде непрерывных обособленных цепочек. Их радикалы [Si2O6]4− и [Si3O9]6−. Представители: пироксены ромбические (энстатит, гиперстен) и моноклинные (диопсид, салит, геденбергит, авгит, эгирин, сподумен, волластонит, силлиманит). Цепочечные силикаты характеризуются средними плотностью и твердостью и совершенной спайностью по граням призмы. Встречаются в магматических и метаморфических горных породах.
3. Поясные (Ленточные) силикаты, это силикаты с непрерывными обособленными лентами или поясами из кремнекислородных тетраэдров. Они имеют вид сдвоенных, не связанных друг с другом цепочек, лент или поясов. Радикал структуры [Si4O11]6−. Представители: тремолит, актинолит, жадеит, роговая обманка.
4. Листовые силикаты, это силикаты с непрерывными слоями кремнекислородных тетраэдров. Радикал структуры [Si2O5]2−. Слои кремнекислородных тетраэдров обособлены друг от друга и связаны катионами. Представители: тальк, серпентин, хризотил-асбест, ревдинскит, полыгорскит, слюды (мусковит, флогопит, биотит), гидрослюды (вермикулит, глауконит), хлориты (пеннит, клинохлор и др), минералы глин (каолинит, хризоколла, гарниерит и др.), мурманит.
5. Силикаты с непрерывными трёхмерными каркасами, или каркасные силикаты. В этом случае все атомы кислорода общие. Такой каркас нейтрален. Радикал [SiO2]0. Именно такой каркас отвечает структуре кварца. На этом основании его относят не к окислам, а к силикатам. Разнообразие каркасных силикатов объясняется тем, что в них присутствуют алюмокислородные тетраэдры. Замена четырёхвалентного кремния на трехвалентный алюминий вызывает появление одной свободной валентности, что в свою очередь влечет за собой вхождение других катионов (например калия и натрия). Обычно отношение Al к Si равно 1:3 или 1:1.