
- •1. Основные критерии работоспособности и расчета деталей машин.
- •2. Резьбовые соединения, их достоинства и недостатки. Основные детали резьбовых соединений: винт, гайка, шпилька, стопорные устройства.
- •3. Типы резьб и область из применения. Основные геометрические параметры резьбы.
- •5. Условия самоторможения винтовой пары. Способы повышения кпд винтовой пары.
- •6. Кпд винтовой пары. Способы повышения кпд винтовой пары. (Вывод формулы для расчета кпд винтовой пары).
- •7. Распределение осевой силы по виткам резьбы. Конструктивные меры, применяемые для улучшения распределения нагрузки по виткам.
- •8. Расчет на прочность стержня винта, нагруженного силой затяжки и моментом сопротивления в резьбе.
- •9. Расчет резьбовых соединений, нагруженных сдвигающей силой при установке винтов с зазором и без зазора.
- •10. Расчет резьбовых соединений, нагруженных моментом сил в плоскости стыка при установке винтов с зазором и без него.
- •11. Расчет резьбовых соединений, нагруженных предварительной силой затяжки и последующей осевой силой.
- •12. Расчет резьбовых соединений, нагруженных отрывающей силой и опрокидывающим моментом.
- •13. Материалы резьбовых соединений и допускаемые напряжения.
- •14. Сварные соединения: достоинства и недостатки, область применения. Типы сварных швов, виды сварных соединений, виды сварки.
- •15. Стыковые соединения. Расчет соединений, нагруженных растягивающей (сжимающей) силой, изгибающим моментом и силой, действующей совместно с моментом.
- •16. Сварные нахлесточные соединения. Типы швов. Распределение напряжений по длине флангового шва.
- •17. Расчет нахлесточных соединений, нагруженных растягивающей (сжимающей) силой, изгибающим моментом, действующим совместно с моментом.
- •18. Тавровые соединения. Расчет соединений, нагруженных силой и силой совместно с моментом.
- •19. Допускаемые напряжения при расчете тавровых соединений.
- •20. Соединения с натягом: достоинства и недостатки, область применения. Способы получения соединений с натягом. Принцип работы (передачи нагрузки) соединения с натягом.
- •21. Расчет соединений с натягом, нагруженных осевой силой, крутящим моментом и силой, действующей совместно с моментом.
- •22. Связь давления на контактной поверхности с расчетным натягом соединения.
- •23. Понятие расчетного и измеренного натяга. Влияние микронеровностей на нагрузочную способность соединения.
- •24. Требуемая сила запрессовки. Требуемая температура нагрева охватывающей (охлаждения охватываемой) детали, для обеспечения свободной сборки соединения.
- •25. Напряженное состояние деталей в соединении с натягом. Проверка прочности.
- •26. Шпоночные соединения. Достоинства и недостатки, область применения. Типы призматических шпонок, способы изготовления шпоночных пазов.
- •27. Соединения призматическими шпонками: расчет и конструкция.
- •28. Соединения сегментными шпонками: конструкция и расчет.
- •30. Критерий работоспособности шлицевых соединений. Метод расчета шлицевых соединений.
- •31. Выбор допускаемых напряжений для шпоночных и шлицевых соединений. Расчет на прочность.
- •32. Общие сведения о передачах: назначение, область применения. Краткая классификация передач, их основные характеристики. Принципы работы, кинематика, сравнительная оценка различных типов передач.
- •34. Зубчатые передачи. Достоинства и недостатки. Основные виды зубчатых передач. Основные параметры зубчатых колес. Передаточное число. Материалы и обработка.
- •35. Силы в зацеплении цилиндрических прямозубых и косозубых колес. Вывод формул.
- •36. Основные причины выхода из строя зубчатых колес и методы расчета для обеспечения работоспособности. (Характер и причины разрушения зубчатых передач. Виды расчета зубчатых передач).
- •37. Понятие коэффициента расчетной нагрузки для зубчатых передач. Коэффициент концентрации и динамичности нагрузки, их физический смысл: от каких параметров зависят величины этих коэффициентов.
- •38. Расчет зубьев цилиндрических прямозубых колес на сопротивление контактной усталости (по контактным напряжениям). Вывод расчетной зависимости и ее анализ.
- •39. Расчет зубьев цилиндрических прямозубых колес на изгибную усталость. Вывод расчетной зависимости на изгибную усталость. (Вывод формулы для расчета цилиндрических колес на изгиб).
- •40. Как определяются допускаемые контактные и изгибные напряжения передачи, работающей длительно с постоянной нагрузкой.
- •41. Коэффициент, учитывающий форму зуба, его физический смысл, от каких параметров он зависит и как изменяется с изменением числа зубьев и величины смещения инструмента при нарезании зубчатого колеса.
- •42. Особенности геометрии и условия работы косозубых цилиндрических передач. Длина линии контакта и распределение нагрузки по длине контакта.
- •43. Понятие "приведенное зубчатое колесо" и приведенное число зубьев косозубых цилиндрических колес. Коэффициент, учитывающий форму зуба косозубого цилиндрического зубчатого колеса.
- •46. Силы, действующие в зацеплении прямозубых конических колес.
- •47. Особенности расчета конических передач на контактную и изгибную усталость.
- •48. Особенность расчета на выносливость косозубых передач по сравнению с прямозубыми.
- •50. Способы смазывания зубчатых передач. Типы смазочных материалов и их объемы.
- •51. Червячные передачи. Достоинства и недостатки, область применения. Принцип действия. Критерии работоспособности (Геометрические и кинематические зависимости).
- •52. Основные параметры червячных передач (мощность, передаточное число, модуль, межосевое расстояние).
- •53. Основные геометрические зависимости. Геометрия червячных передач без смещения исходного производящего контура.
- •54. Червячные передачи со смещением исходного производящего контура, коэффициенты смещения.
- •55. Типы червяков, технология изготовления червяков и червячных колес.
- •56. Скольжение в червячной передаче (скорость скольжения), кпд червячной передачи вывод формулы, анализ расчетной зависимости и способы повышения кпд.
- •57. Силы в зацеплении червячной передачи.
- •58. Причины выхода из строя червячных передач и критерии их работоспособности.
- •59. Выбор материала для червяка и венца червячного колеса.
- •60. Расчет зубьев червячных передач на сопротивление контактной и изгибной усталости. Понятие о расчетной нагрузке.
- •61. Выбор допускаемых напряжений при расчете червячных передач.
- •62. Тепловой расчет и способы охлаждения червячных передач.
- •63. Способы смазывания червячных передач, типы смазочных материалов и их объемы.
- •64. Передача винт-гайка: назначение, достоинства и недостатки, область применения.
- •65. Передача винт-гайка скольжения, области применения, пример конструкции, критерии оценки работоспособности. Материалы элементов передач. Вывод зависимости для проектного расчета.
- •66. Сравнительная оценка передачи трением скольжения с передачей трением качения.
- •67. Основные параметры и типы резьб, применяемые в резьбовых передачах.
- •68. Материалы и виды термических обработок, применяемые для изготовления основных элементов резьбовых передач.
- •69. Причины выхода из строя резьбовых передач. Критерии расчета передач трением качения и трением скольжения.
- •70. Самоторможение резьбовой передачи.
- •71. Момент завинчивания в резьбовой передаче. Распределение силы и крутящего момента вдоль оси винта.
- •72. Виды трения и кпд резьбовых передач. Пути повышения кпд.
- •73. Методы расчета основных элементов резьбовой передачи на прочность.
- •74. Расчет винтов на устойчивость, методика расчета.
- •75. Принцип схематизации опор винта в резьбовых передачах при расчете его на устойчивость. Пример такой схематизации.
- •76. Приведенная длина винта резьбовой передачи при расчете его на устойчивость.
- •77. Гибкость винта. Определение гибкости винта и ее влияние на величину критической силы, действующей вдоль оси винта.
- •78. Использование объединенного условия прочности и устойчивости сжатых стержней в расчетах резьбовых передач.
- •80. Клиноременная и плоскоременная передачи, сравнение, достоинства и недостатки ременных передач. Конструкция клиновых ремней. Материалы. Геометрические параметры ременных передач.
- •82) Подшипники скольжения, условия работы, характер разрушения. Расчет подшипников, работающих при граничной или полужидкостной смазке.
- •83) Подшипники качения. Классификация. Достоинства и недостатки в сравнении с подшипниками скольжения.
- •84) Кинематика подшипников качения.
- •85) Распределение радиальной нагрузки между телами качения в радиальном однорядном шарикоподшипнике.
- •86) Контактные напряжения в деталях подшипника.
- •87) Причины выхода из строя подшипников качения.
- •90) Конструкция шарикового и роликового радиального подшипника качения, шарикового и роликового радиально-упорного.
- •94) Каким образом в расчетах подшипников качения на ресурс учитывается требуемый повышенный уровень надежности.
- •98) Для каких условий эксплуатации предназначены шариковые радиальные двухрядные сферические подшипники. Воспринимаемая нагрузка и подбор подшипников этого типа по заданным нагрузке и ресурсу l.
- •100) Почему целесообразно конструировать опоры так, чтобы кольцо, вращающееся относительно нагрузки было установлено с натягом.
- •101) Как изменится расчетный ресурс шарикового подшипника, воспринимающего постоянную радиальную нагрузку, если вращение внутреннего кольца заменить вращением наружного кольца с той же частотой.
- •105) Приводные муфты, назначение и краткая классификация.
- •106) Основные характеристики муфт. Расчетный момент приводных муфт.
- •107) Назначение глухих муфт. Пример конструкции глухой муфты, ее назначение, свойства и расчет. Приведите пример и метод расчета фланцевой (поперечно-свертной) муфты.
- •111) Предохранительные муфты: назначение, область применения. Основные требования, предъявляемые к предохранительным муфтам. Пример конструкции и метод расчета муфты с разрушающим элементом.
- •112) Центробежная муфта.
30. Критерий работоспособности шлицевых соединений. Метод расчета шлицевых соединений.
Критерии: 1) смятие 2) износ 3) возможен срез зубьев
Основными видами отказов шлицевых соединений являются смятие и износ рабочих поверхностей. Износ является следствием работы сил трения при взаимных микроперемещениях контактирующих поверхностей в процессе работы. Особенно большой износ в шлицевых соединениях наблюдается при скудной загрязненной смазке, больших напряжениях смятия. Износостойкость соединения повышают с помощью увеличения твердости контактирующих поверхностей закалкой, уменьшения зазоров между зубьями, а также применяя смазочный материал и хорошее уплотнение от загрязнения.
Расчет шлицевых соединений ведется по двум критериям: 1) смятие (если только присутствует вращающий момент) 2) износостойкость (если еще изгибающий момент и радиальные силы).
Упрощенный расчет
на смятие:
где kPH
– коэффициент, учитывающий неравномерность
распределения нагрузки между зубьями
из-за ошибок изготовления, h – рабочая
высота зубьев, l – рабочая длина зубьев.
Для прямобочного профиля:
где f – величина
фаски.
31. Выбор допускаемых напряжений для шпоночных и шлицевых соединений. Расчет на прочность.
Для шпонок:
Неподвижная стальная ступица [σ]см=130..200 МПа
Неподвижная ступица из чугуна или стального литья [σ]см=80..110 МПа
Подвижное, без нагрузки, стальная ступица [σ]см=20..40 МПа
Большие значения принимает при постоянном нагружении, меньшие – при переменном и работе с ударами, при реверсивной нагрузке вообще снижают [σ]см в 1.5 раза.
Допускаемое напряжение на срез шпонок [τ]ср=70..100 МПа
Для шлицевых соединений:
Неподвижное, при <350HB [σ]см=60..100 МПа, при >40HRC [σ]см=100..140 МПа
Подвижное без нагрузки (блок шестерен коробки передач), при <350HB [σ]см=20..30 МПа, при >40HRC [σ]см=30..60МПа
Подвижное под нагрузкой (соединение карданного вала), при <350HB [σ]см=не используют, при >40HRC [σ]см=5..15МПа
32. Общие сведения о передачах: назначение, область применения. Краткая классификация передач, их основные характеристики. Принципы работы, кинематика, сравнительная оценка различных типов передач.
Передачи – устройства, использующиеся для передачи энергии от источника энергии к исполнительному механизму. Передачи могут быть: электрические, гидравлические, механические.
Назначение: 1) изменение частоты вращения электродвигателя. Уменьшение частоты – редуктор, увеличение частоты – мультипликатор. Источники энергии выпускают только нескольких частот. Чем ниже частота вращения, тем тяжелее механизм и тем дороже и имеет большие габариты. Исполнительные механизмы обычно работают на меньших скоростях, чем электродвигатели, поэтому приходится применять передачу. 2) изменение закона движения из вращательного в поступательное 3) удобство обслуживания.
В зависимости от принципа действия механических передач их разделяют на: 1) передачи зацепления (зубчатые, цепные, червячные) 2) передачи трением (фрикционные).
Зубчатая передача – механизм, который с помощью зацепления передает или преобразует движение с изменением скоростей и моментов. Зубчатые передачи по сравнению с другими передачами обладают рядом достоинств: малыми габаритами, высоким КПД, большой надежностью в работе. Обычно зубчатая передача состоит из 2х колес.
Червячная передача – это механизм для передачи вращения зацеплением, с непосредственным контактом витков червяка и зубьев червячного колеса. Червячные передачи применяются при необходимости передачи вращения между перекрещивающимися осями.
Цепная передача – механизм, состоящий из ведущей и ведомой звездочек и охватывающих их цепей.
Ременная передача – передача, состоящая из ведущих и ведомых шкивов и надетого на них ремня.
Основные
характеристики передач: 1) передаточное
число n 2) КПД η<1 3) крутящий момент
33. Контактные напряжения. Виды разрушения, вызываемые контактными напряжениями. Какие передачи рассчитываются по сопротивлению контактной усталости. Формулы Герца и их использование в расчетах на контактную прочность.
Работоспособность ряда деталей характеризуется прочностью поверхностных слоев сопрягаемых деталей – контактной прочностью.
При передаче сил через поверхности, размеры которых малы по сравнению с размерами сопрягаемых тел, возникают контактные напряжения.
Виды контакта: 1) по плоскости 2) по линии 3) в точке.
Передача сил от одной детали к другой в машинах осуществляется по сопряженным поверхностям контакта. Первоначальный контакт (контакт без нагрузки) в сопряжениях деталей машин происходит по поверхности, в точке или по линии. В зависимости от характера взаимного перемещения контактирующих поверхностей под нагрузкой различают неподвижные и подвижные сопряжения деталей.
Задачей расчета сопряжений является определение напряжений и деформаций. Они нужны для расчета деталей на прочность, износостойкость и для определения жесткости (или обратной величины — податливости) соединения. Расчет напряжений и деформаций в сопрягаемых деталях называют решением контактной задачи, а напряжения — контактными. В точной общей постановке ее решение связано со значительными трудностями, обусловленными сложной формой деталей. Поэтому обычно задачу решают приближенно для частных форм деталей и условий нагружения.
Особый
класс задач составляют задачи с
первоначальным контактом деталей в
точке или по линии. Решения этих задач
обычно выполнены для неподвижного
контакта и используются при расчете
на прочность подшипников качения,
зубчатых и фрикционных передач. Учитывая,
что в подшипниках качения и передачах
контакт подвижный (действуют силы
трения) и часто присутствует смазочный
материал в сопряжениях, условие
прочности имеет вид
Расчетное контактное напряжение σн сравнивают с допускаемым [σ]н, полученным экспериментально на реальных образцах в реальных условиях работы.
Решение задачи о контакте двух неподвижных шаров было получено известным немецким механиком Г. Герцем в 1881 г. при следующих допущениях: материал шаров изотропный и подчиняется закону Гука, поверхности без смазочного материала и абсолютно гладкие (шероховатость отсутствует), размеры площадки контакта малы по сравнению с радиусами кривизны шаров, площадка контакта плоская.
,
Где
E – модуль упругости, υ
– коэффициент Пуассона,
- приведенный радиус кривизны.
Если контактируют одинаковые материалы, то формула сокращается:
,
где wn
– распределенная нагрузка по длине
образующей цилиндров.
Наибольшие контактные напряжения возникают в тонком поверхностном слое материала. Поэтому для повышения контактной прочности достаточно упрочнить только поверхностный слой детали. Для зубчатых передач толщина этого слоя составляет 0,2...0,3 модуля. На практике это достигается различными методами термической и химико-термической обработки материала.
Виды разрушения:
1) на поверхности контакта происходят сдвиги (т.к. нагрузка циклическая, то материал в результате циклического нагружения постоянно меняет свою форму и изнашивается)
2) усталостное выкрашивание – любая точка поверхности испытывает циклическую нагрузку, возникает поверхностный микросдвиг, это приводит к образование микротрещин, которые в свою очередь раскрываются в зоне растяжения, в них попадает смазка, жидкость плохосжимаема – трещина увеличивается в размерах, и при многократных повторениях цикла происходит вырывание частиц.
3) Смятие контактных поверхностей. Если оно произошло, то была ударная или вибрационная нагрузка (неправильная эксплуатация). Смятие – пластическая деформация поверхностного слоя.
4) заедание – возникает в случае отсутствия смазки или разрыв смазочного слоя в случае большой ударной нагрузки. Появление местного повышения температуры и отрыв частиц с переносом их на другую поверхность.