
- •2. Классификация измерений. Статические и динамические измерения. Прямые, косвенные, совместные, абсолютные и относительные измерения. Точность измерения. Основные принципы и методы измерений.
- •3. Классификация измерений по их типу: метод сравнения с мерой, метод непосредственной оценки, метод противопоставления, дифференциальный и нулевой методы, метод замещения.
- •4. Средства измерений и их характеристики. Классификация средств измерений. Метрологические характеристики средств измерений и их нормирование.
- •6. Физические величины и единицы. Эталоны и образцовые средства измерений.
- •7.Погрешности измерений. Причины возникновения и классификация погрешностей. Методические и аппаратурные погрешности. Погрешности отсчитывания и установки.(субъективная погрешность)
- •8.Систематические и случайные погрешности. Стандартное представление результатов измерений. Округление результатов измерений.
- •9. Случайные погрешности и способы их описания. Доверительный интервал и доверительная вероятность.
- •10. Классы точности.
- •11. Оценка погрешностей средств измерений.
- •12. Свойства оценок случайных погрешностей: несмещенность, эффективность, состоятельность. Точечные и интервальные оценки.
- •13. Плотность распределения результатов наблюдений. Точечные оценки результатов измерений: математическое ожидание, дисперсия оценки математического ожидания.
- •14. Оценки дисперсии измерений при априори известном и неизвестном значении математического ожидания. Несмещенная оценка дисперсии.
- •15. Интервальная оценка математического ожидания. Распределение Стьюдента. Доверительный интервал и доверительная вероятность.
- •16. Интервальная оценка дисперсии результата измерений.
- •17. Выявление и исключение грубых погрешностей измерений.
- •18. Суммирование погрешностей при прямых измерениях.
- •19. Косвенные измерения. Совокупные и совместные измерения. Коэффициент корреляции результатов измерений.
- •20. Интегральные параметры текущих значений напряжений, измеряемых вольтметрами. Приборы с открытым и закрытым входом.
- •21. Обобщенная структурная схема вольтметра прямого измерения; его градуировка. Взаимосвязь между показаниями вольтметров разной градуировки при измерении напряжений, имеющих различные формы.
- •22. Обобщенная структурная схема (осс) аналогового электромеханического вольтметра (аэв).
- •24. Детектор
- •25. Цифровые вольтметры
- •26. Классификация методов и приборов измерения компонентов и цепей. Метод непосредственной оценки сопротивлений. Омметры.
- •27. Измерение сопротивлений методом сравнения с мерой: мосты постоянного тока. Источники погрешностей измерений.
- •28. Измерительные мосты переменного тока. Метод раздельного отсчета.
- •29. Метод вольтметра-амперметра.
- •30. Классификация резонансных методов измерения параметров компонентов и цепей.
- •31. Генераторный вариант резонансного метода измерения параметров компонентов и цепей.
- •32. Обобщенная структурная схема осциллографа. Назначение элементов
- •33. Виды разверток электронного осциллографа: непрерывная, ждущая, круговая и эллиптическая, двойная. Их назначение.
- •34. Измерение амплитуды сигнала электронным осциллографом: метод калибровочных шкал (мкш), компенсационный метод, метод сравнения.
- •36 Осциллографический метод сравнения частот. Определение отношения частот и сдвига фаз по интерференционным фигурам.
- •37. Измерение фазового сдвига: мкш, метод эллипса.
- •38. Погрешности осциллографических методов измерений; их источники и методы компенсации. Методика расчета погрешностей.
- •39. Аналоговые методы измерения частоты: метод сравнения, осциллографические методы при линейной, синусоидальной и круговой развертках.
- •2.1.1.Методы сравнения.
- •40. Аналоговые методы измерения частоты: способ нулевых биений, гетеродинные частотомеры.
- •41. Цифровые частотомеры, основанные на методе прямого счета.
- •42. Цифровые измерители временных интервалов, основанные на методе прямого счета.
- •43. Методы измерения фазового сдвига.
- •44. Цифровые фазометры.
- •45. Основные положения спектрального анализа. Цифровые методы спектрального анализа.
- •46. Одновременный частотный анализ спектра.
- •47. Последовательный частотный анализ.
- •48. Технические и метрологические характеристики анализаторов спектра последовательного типа.
- •49. Автоматизация измерений. Измерительно-информационные системы (исс). Агрегатный и блочно-модульный принципы построения иис.
- •50. Структурная схема иис. Типы интерфейсов. Агрегатный комплекс средств измерительной техники. Роль микропроцессоров и микро-эвм.
3. Классификация измерений по их типу: метод сравнения с мерой, метод непосредственной оценки, метод противопоставления, дифференциальный и нулевой методы, метод замещения.
В зависимости от способа определения значений искомых величин различают два основных метода измерений метод непосредственной оценки и метод сравнения с мерой.
Метод непосредственной оценки - метод измерения, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия. Примерами таких измерений являются: измерение длины с помощью линейки, размеров деталей микрометром, угломером, давления манометром и т. д.
Метод сравнения с мерой - метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Например, для измерения диаметра калибра оптиметр устанавливают на нуль по блоку концевых мер длины, а результат измерения получают по показанию стрелки оптиметра, являющегося отклонением от нуля. Таким образом, измеряемая величина сравнивается с размером блока концевых мер.Существуют несколько разновидностей метода сравнения:
а) метод противопоставления, при котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, позволяющий установить соотношение между этими величинами, например измерение сопротивления по мостовой схеме с включением в диагональ моста показывающего прибора;
б) дифференциальный метод, при котором измеряемую величину сравнивают с известной величиной, воспроизводимой мерой. Этим методом, например, определяют отклонение контролируемого диаметра детали на оптиметре после его настройки на нуль по блоку концевых мер длины;
в) нулевой метод - также разновидность метода сравнения с мерой, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Этим методом измеряют электрическое сопротивление по схеме моста с полным его уравновешиванием;
г) при методе совпадений разность между измеряемой величиной и величиной, воспроизводимой мерой, определяют, используя совпадения отметок шкал или периодических сигналов. Например, при измерении штангенциркулем используют совпадение отметок основной и нониусной шкал.
д) метод замещения – метод сравнения с мерой, в котором измеряемую величину замещают известной величиной, воспроизводимой мерой, то есть эти величины воздействуют на прибор последовательно.
4. Средства измерений и их характеристики. Классификация средств измерений. Метрологические характеристики средств измерений и их нормирование.
Средство измерений — техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени.
Классификация
По техническому назначению:
мера физической величины — cредство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью;
измерительный прибор — средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне;
измерительный преобразователь — техническое средство с нормативными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации или передачи;
измерительная установка (измерительная машина) — совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенная для измерений одной или нескольких физических величин и расположенная в одном месте
измерительная система — совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого объекта и т. п. с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки измерительных сигналов в разных целях;
измерительно-вычислительный комплекс — функционально объединенная совокупность средств измерений, ЭВМ и вспомогательных устройств, предназначенная для выполнения в составе измерительной системы конкретной измерительной задачи.
По степени автоматизации:
автоматические;
автоматизированные;
ручные.
По стандартизации средств измерений:
стандартизированные;
нестандартизированные.
По положению в поверочной схеме:
эталоны;
рабочие средства измерений.
По значимости измеряемой физической величины:
основные средства измерений той физической величины, значение которой необходимо получить в соответствии с измерительной задачей;
вспомогательные средства измерений той физической величины, влияние которой на основное средство измерений или объект измерений необходимо учитывать для получения результатов измерений требуемой точности.
По измерительным физико- химическим параметрам:
для измерения температуры;
давления;
расхода и количества;
концентрации раствора;
для измерения уровня и др.
Под нормированием понимается установление границ на допустимые отклонения реальных метрологических характеристик средств измерений от их номинальных значений. Только посредством нормирования метрологических характеристик можно добиться их взаимозаменяемости и обеспечить единство измерений в государстве. Реальные значения метрологических характеристик определяют при изготовлении средств измерений и затем проверяют периодически во время эксплуатации. Если при этом хотя бы одна из метрологических характеристик выходит за установленные границы, то такое средство измерений либо подвергают регулировке, либо изымают из обращения.
Нормы на значения метрологических характеристик устанавливаются стандартами на отдельные виды средств измерения. При этом делается различие между нормальными и рабочими условиями применения средств измерения.
Нормальными считаются такие условия применения средств измерений, при которых влияющие на процесс измерения величины (температура, влажность, частота, напряжение питания, внешние магнитные поля и т.д.), а также неинформативные параметры входных и выходных сигналов находятся в нормальной для данных средств измерений области значений, т.е. в такой области, где их влиянием на метрологические характеристики можно пренебречь. Нормальные области значений влияющих величин указываются в стандартах или технических условиях на средства измерений данного вида в форме номиналов с нормированными отклонениями, например, температура должна составлять 20±2°С, напряжение питания – 220 В±10% или в форме интервалов значений (влажность 30 – 80 %).
Рабочая область значений влияющих величин шире нормальной области значений. В ее пределах метрологические характеристики существенно зависят от влияющих величин, однако их изменения нормируются стандартами на средства измерений в форме функций влияния или наибольших допустимых изменений. За пределами рабочей области метрологические характеристики принимают неопределенные значения.
5. Единая теория измерений (может быть Общая теория измерений). Эталоны и образцовые средства измерений. (см. вопрос 6). Понятие о стандартизации и стандартах.
Эталоны и образцовые средства измерений.
Высшим звеном в метрологической передачи размеров единиц являются эталоны. Эталон единицы – средство измерений обеспечивающее воспроизведение и хранение единицы с целью передачи ее размера нижестоящим по поверочной схеме средствам измерений
Эталон, обеспечивающий воспроизведение единицы с наивысшей в стране точностью, называется первичным.
Специальный эталон воспроизводит единицу в особых условиях и заменяет при этих условия первичный эталон.
Первичный или специальный эталон, официально утвержденный в качестве исходного для страны, называется государственным. Государственные эталоны утверждаются Госкомитетом по стандартам.
Эталон-копия предназначен для передачи размеров единиц рабочим эталонам. Он не всегда является физической копией государственного эталона.
Эталон-свидетель предназначен для проверки сохранности государственного эталона и для замены его в случае порчи или утраты.
Эталон сравнения применяют для сличения эталонов, которые по тем или иным причинам не могут быть непосредственно сличаемы друг с другом.
Рабочий эталон применяют для передачи размера единицы образцовым средствам измерений высшей точности, а в отдельных случаях – наиболее точным средствам измерений.
Образцовое средство измерения – мера, измерительный прибор или измерительный преобразователь, служащий для поверки по ним других средств измерений и утвержденные в качестве образцовых.
Поверка средств измерений – определение метрологическим органом погрешности средств измерений и установления его пригодности к использованию.
Рабочее средство измерений – применяют для измерений, не связанных с передачей размеров единиц.
Общая теория измерений относится к основным направлениям метрологии.
Стандартизация – установление и применение правил с целью упорядочения деятельности при участии всех заинтересованных сторон. Стандартизация должна обеспечить возможно полное удовлетворение интересов производителя и потребителя, повышение производительности труда, экономное расходование материалов, энергии, рабочего времени и гарантировать безопасность при производстве и эксплуатации.
Объектами стандартизации являются изделия, нормы, правила, требования, методы, термины, обозначения и т.п., имеющие перспективу многократного применения в науке, технике, промышленности, сельском хозяйстве, строительстве, на транспорте и в связи, в культуре, здравоохранении, а также в международной торговле.
Стандарт – нормативно-технический документ, устанавливающий комплекс норм, правил, требований к объекту стандартизации и утвержденный компетентным органом. Стандарт может быть разработан как на предметы (продукцию, сырье, образцы веществ), так и на нормы, правила, требования к объектам организационно-методического и общетехнического характера труда, порядок разработки документов, нормы безопасности, системы управления качеством и др.