
- •2. Классификация измерений. Статические и динамические измерения. Прямые, косвенные, совместные, абсолютные и относительные измерения. Точность измерения. Основные принципы и методы измерений.
- •3. Классификация измерений по их типу: метод сравнения с мерой, метод непосредственной оценки, метод противопоставления, дифференциальный и нулевой методы, метод замещения.
- •4. Средства измерений и их характеристики. Классификация средств измерений. Метрологические характеристики средств измерений и их нормирование.
- •6. Физические величины и единицы. Эталоны и образцовые средства измерений.
- •7.Погрешности измерений. Причины возникновения и классификация погрешностей. Методические и аппаратурные погрешности. Погрешности отсчитывания и установки.(субъективная погрешность)
- •8.Систематические и случайные погрешности. Стандартное представление результатов измерений. Округление результатов измерений.
- •9. Случайные погрешности и способы их описания. Доверительный интервал и доверительная вероятность.
- •10. Классы точности.
- •11. Оценка погрешностей средств измерений.
- •12. Свойства оценок случайных погрешностей: несмещенность, эффективность, состоятельность. Точечные и интервальные оценки.
- •13. Плотность распределения результатов наблюдений. Точечные оценки результатов измерений: математическое ожидание, дисперсия оценки математического ожидания.
- •14. Оценки дисперсии измерений при априори известном и неизвестном значении математического ожидания. Несмещенная оценка дисперсии.
- •15. Интервальная оценка математического ожидания. Распределение Стьюдента. Доверительный интервал и доверительная вероятность.
- •16. Интервальная оценка дисперсии результата измерений.
- •17. Выявление и исключение грубых погрешностей измерений.
- •18. Суммирование погрешностей при прямых измерениях.
- •19. Косвенные измерения. Совокупные и совместные измерения. Коэффициент корреляции результатов измерений.
- •20. Интегральные параметры текущих значений напряжений, измеряемых вольтметрами. Приборы с открытым и закрытым входом.
- •21. Обобщенная структурная схема вольтметра прямого измерения; его градуировка. Взаимосвязь между показаниями вольтметров разной градуировки при измерении напряжений, имеющих различные формы.
- •22. Обобщенная структурная схема (осс) аналогового электромеханического вольтметра (аэв).
- •24. Детектор
- •25. Цифровые вольтметры
- •26. Классификация методов и приборов измерения компонентов и цепей. Метод непосредственной оценки сопротивлений. Омметры.
- •27. Измерение сопротивлений методом сравнения с мерой: мосты постоянного тока. Источники погрешностей измерений.
- •28. Измерительные мосты переменного тока. Метод раздельного отсчета.
- •29. Метод вольтметра-амперметра.
- •30. Классификация резонансных методов измерения параметров компонентов и цепей.
- •31. Генераторный вариант резонансного метода измерения параметров компонентов и цепей.
- •32. Обобщенная структурная схема осциллографа. Назначение элементов
- •33. Виды разверток электронного осциллографа: непрерывная, ждущая, круговая и эллиптическая, двойная. Их назначение.
- •34. Измерение амплитуды сигнала электронным осциллографом: метод калибровочных шкал (мкш), компенсационный метод, метод сравнения.
- •36 Осциллографический метод сравнения частот. Определение отношения частот и сдвига фаз по интерференционным фигурам.
- •37. Измерение фазового сдвига: мкш, метод эллипса.
- •38. Погрешности осциллографических методов измерений; их источники и методы компенсации. Методика расчета погрешностей.
- •39. Аналоговые методы измерения частоты: метод сравнения, осциллографические методы при линейной, синусоидальной и круговой развертках.
- •2.1.1.Методы сравнения.
- •40. Аналоговые методы измерения частоты: способ нулевых биений, гетеродинные частотомеры.
- •41. Цифровые частотомеры, основанные на методе прямого счета.
- •42. Цифровые измерители временных интервалов, основанные на методе прямого счета.
- •43. Методы измерения фазового сдвига.
- •44. Цифровые фазометры.
- •45. Основные положения спектрального анализа. Цифровые методы спектрального анализа.
- •46. Одновременный частотный анализ спектра.
- •47. Последовательный частотный анализ.
- •48. Технические и метрологические характеристики анализаторов спектра последовательного типа.
- •49. Автоматизация измерений. Измерительно-информационные системы (исс). Агрегатный и блочно-модульный принципы построения иис.
- •50. Структурная схема иис. Типы интерфейсов. Агрегатный комплекс средств измерительной техники. Роль микропроцессоров и микро-эвм.
Предмет и задачи метрологии. Основные термины, применяемые в метрологии: физическая величина, измерение, единица физической величины, единство измерений, мера, измерительный прибор, измерительный преобразователь, измерительная система, вспомогательное средство измерений.
Классификация измерений. Статические и динамические измерения. Прямые, косвенные, совместные, абсолютные и относительные измерения. Точность измерения. Основные принципы и методы измерений.
Классификация измерений по их типу: метод сравнения с мерой, метод непосредственной оценки, метод противопоставления, дифференциальный и нулевой методы, метод замещения.
Средства измерений и их характеристики. Классификация средств измерений. Метрологические характеристики средств измерений и их нормирование.
Единая теория измерений. Эталоны и образцовые средства измерений. Понятие о стандартизации и стандартах.
Физические величины и единицы. Эталоны и образцовые средства измерений.
Погрешности измерений. Причины возникновения и классификация погрешностей. Методические и аппаратурные погрешности. Погрешности отсчитывания и установки.
Систематические и случайные погрешности. Стандартное представление результатов измерений. Округление результатов измерений.
Случайные погрешности и способы их описания. Доверительный интервал и доверительная вероятность.
Классы точности.
Оценка погрешностей средств измерений.
Свойства оценок случайных погрешностей: несмещенность, эффективность, состоятельность. Точечные и интервальные оценки.
Плотность распределения результатов наблюдений. Точечные оценки результатов измерений: математическое ожидание, дисперсия оценки математического ожидания.
Оценки дисперсии измерений при априори известном и неизвестном значении математического ожидания. Несмещенная оценка дисперсии.
Интервальная оценка математического ожидания. Распределение Стьюдента. Доверительный интервал и доверительная вероятность.
Интервальная оценка дисперсии результата измерений.
Выявление и исключение грубых погрешностей измерений.
Суммирование погрешностей при прямых измерениях.
Косвенные измерения. Совокупные и совместные измерения. Коэффициент корреляции результатов измерений.
Интегральные параметры текущих значений напряжений, измеряемых вольтметрами. Приборы с открытым и закрытым входом.
Обобщенная структурная схема вольтметра прямого измерения; его градуировка. Взаимосвязь между показаниями вольтметров разной градуировки при измерении напряжений, имеющих различные формы.
Обобщенная структурная схема (ОСС) аналогового электромеханического вольтметра (АЭВ). Входное устройство, его назначение, варианты принципиальной схемы и условия их применения.
ОСС АЭВ. Усилители постоянного и переменного тока. Структурные схемы и назначение элементов.
ОСС АЭВ. Детекторные усилительные преобразователи, их назначение.
Цифровые вольтметры. Обобщенная структурная схема и их основные характеристики: диапазон измерений, погрешности, быстродействие. Взаимосвязь этих характеристик с параметрами элементов структурной схемы.
Классификация методов и приборов измерения компонентов и цепей. Метод непосредственной оценки сопротивлений. Омметры.
Измерение сопротивлений методом сравнения с мерой: мосты постоянного тока. Источники погрешностей измерений.
Измерительные мосты переменного тока. Метод раздельного отсчета.
Метод вольтметра-амперметра.
Классификация резонансных методов измерения параметров компонентов и цепей.
Генераторный вариант резонансного метода измерения параметров компонентов и цепей.
Обобщенная структурная схема осциллографа. Назначение элементов.
Виды разверток электронного осциллографа: непрерывная, ждущая, круговая и эллиптическая, двойная. Их назначение.
Измерение амплитуды сигнала электронным осциллографом: метод калибровочных шкал (МКШ), компенсационный метод, метод сравнения.
Измерение длительности электронным осциллографом: МКШ, компенсационный метод.
Осциллографический метод сравнения частот. Определение отношения частот и сдвига фаз по интерференционным фигурам.
Измерение фазового сдвига: МКШ, метод эллипса.
Погрешности осциллографических методов измерений; их источники и методы компенсации. Методика расчета погрешностей.
Аналоговые методы измерения частоты: метод сравнения, осциллографические методы при линейной, синусоидальной и круговой развертках.
Аналоговые методы измерения частоты: способ нулевых биений, гетеродинные частотомеры.
Цифровые частотомеры, основанные на методе прямого счета.
Цифровые измерители временных интервалов, основанные на методе прямого счета.
Методы измерения фазового сдвига.
Цифровые фазометры.
Основные положения спектрального анализа. Цифровые методы спектрального анализа.
Одновременный частотный анализ спектра.
Последовательный частотный анализ.
Технические и метрологические характеристики анализаторов спектра последовательного типа.
Автоматизация измерений. Измерительно-информационные системы (ИСС). Агрегатный и блочно-модульный принципы построения ИИС.
Структурная схема ИИС. Типы интерфейсов. Агрегатный комплекс средств измерительной техники. Роль микропроцессоров и микро-ЭВМ.
1. Предмет и задачи метрологии. Основные термины, применяемые в метрологии: физическая величина, измерение, единица физической величины, единство измерений, мера, измерительный прибор, измерительный преобразователь, измерительная система, вспомогательное средство измерений.
Под метрологией подразумевается наука об измерениях, о существующих средствах и методах, помогающих соблюсти принцип их единства, а также о способах достижения требуемой точности.
Происхождение самого термина «метрология» возводят к двум греческим словам: metron, что переводится как «мера», и logos – «учение». Бурное развитие метрологии пришлось на конец ХХ в. Оно неразрывно связано с развитием новых технологий. До этого метрология была лишь описательным научным предметом.
Таким образом, можно сказать, что метрология изучает:
методы и средства для учета продукции по следующим показателям: длине, массе, объему, расходу и мощности;
измерения физических величин и технических параметров, а также свойств и состава веществ;
измерения для контроля и регулирования технологических процессов.
Выделяют несколько основных направлений метрологии:
общая теория измерений;
системы единиц физических величин;
методы и средства измерений;
методы определения точности измерений;
основы обеспечения единства измерений, а также основы единообразия средств измерения;
эталоны и образцовые средства измерений;
методы передачи размеров единиц от образцов средств измерения и от эталонов рабочим средствам измерения.
Следует различать также объекты метрологии:
единицы измерения величин;
средства измерений;
методики, используемые для выполнения измерений и т. д.
Метрология включает в себя: во-первых, общие правила, нормы и требования, во-вторых, вопросы, нуждающиеся в государственном регламентировании и контроле.
И здесь речь идет о:
физических величинах, их единицах, а также об их измерениях;
принципах и методах измерений и о средствах измерительной техники;
погрешностях средств измерений, методах и средствах обработки результатов измерений с целью исключения погрешностей;
обеспечении единства измерений, эталонах, образцах;
государственной метрологической службе;
методике поверочных схем;
рабочих средствах измерений.
В связи с этим задачами метрологии становятся:
создание общей теории измерений,
усовершенствование эталонов,
разработка и стандартизация методов и средств измерений, методов определения точности измерений, основ обеспечения единства измерений и единообразия средств измерений,
создание эталонов и образцовых средств измерений, поверка мер и средств измерений. Приоритетной подзадачей данного направления является выработка системы эталонов на основе физических констант,
обеспечение единства и необходимой точности измерений.
Термины:
Единство измерений — состояние измерений, характеризующееся тем, что их результаты выражаются в узаконенных единицах, размеры которых в установленных пределах равны размерам единиц, воспроизводимым первичными эталонами, а погрешности результатов измерений известны и с заданной вероятностью не выходят за установленные пределы.
Физическая величина — одно из свойств физического объекта, общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.
Измерение — совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения измеряемой величины с ее единицей и получения значения этой величины.
Средство измерений(измерительный прибор) — техническое средство, предназначенное для измерений и имеющее нормированные метрологические характеристики.
Единица физической величины — физическая величина, которой по определению присвоено значение, равное единице. Система единиц физической величины — совокупность основных единиц, служащих базой для установления связей с другими, производными, физическими единицами.
Мера — средство измерений, предназначенное для воспроизведения физической величины заданного размера (кварцевый генератор является мерой частоты электрических колебаний). Измерительный прибор — средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем.
Измерительный преобразователь — средство измерений, предназначенное для выработки сигнала измерительной информации, не поддающейся непосредственному восприятию наблюдателем.
Измерительная система — совокупность средств измерений и вспомогательных устройств, соединенных между собой каналами связи, предназначенных для выработки сигналов измерительной информации в удобной для автоматической обработки, передачи и использования форме.
Вспомогательное средство измерений — средство измерений той физической величины, влияние которой на основное средство измерений или объект измерений необходимо учитывать для получения результатов измерений требуемой точности.
2. Классификация измерений. Статические и динамические измерения. Прямые, косвенные, совместные, абсолютные и относительные измерения. Точность измерения. Основные принципы и методы измерений.
Измерение - процесс нахождения значения физической величины опытным путем с помощью средств измерения.
Результатом процесса является значение физической величины Q = qU , где q - числовое значение физической величины в принятых единицах; U - единица физической величины. Значение физической величины Q, найденное при измерении, называют действительным.
Принцип измерений - физическое явление или совокупность физических явлений, положенных в основу измерений. Например, измерение массы тела при помощи взвешивания с использованием силы тяжести, пропорциональной массе, измерение температуры с использованием термоэлектрического эффекта.
Метод измерений - совокупность приемов использования принципов и средств измерений.
Средствами измерений (СИ) являются используемые технические средства, имеющие нормированные метрологические свойства.
Существует различные виды измерений. Классификацию видов измерения проводят, исходя из характера зависимости измеряемой величины от времени, вида уравнения измерений, условий, определяющих точность результата измерений и способов выражения этих результатов.
По характеру зависимости измеряемой величины от времени измерения выделяют статические и динамические измерения.
Статические - это измерения, при которых измеряемая величина остается постоянной во времени. Такими измерениями являются, например, измерения размеров изделия, величины постоянного давления, температуры и др.
Динамические - это измерения, в процессе которых измеряемая величина изменяется во времени, например, измерение давления и температуры при сжатии газа в цилиндре двигателя.
По способу получения результатов, определяемому видом уравнения измерений, выделяют прямые, косвенные, совокупные и совместные измерения.
Прямые - это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения можно выразить формулой Q = X, где Q - искомое значение измеряемой величины, а X - значение, непосредственно получаемое из опытных данных. Примерами таких измерений являются: измерение длины линейкой или рулеткой, измерение диаметра штангенциркулем или микрометром, измерение угла угломером, измерение температуры термометром и т.п.
Косвенные - это измерения, при которых значение величины определяют на основании известной зависимости между искомой величиной и величинами, значения которых находят прямыми измерениями. Таким образом, значение измеряемой величины вычисляют по формуле Q = F(x1, x2 ... xN), где Q - искомое значение измеряемой величины; F - известная функциональная зависимость, x1, x2, … , xN - значения величин, полученные прямыми измерениями. Примеры косвенных измерений: определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения, измерение среднего диаметра резьбы методом трёх проволочек и т.д. Косвенные измерения широко распространены в тех случаях, когда искомую величину невозможно или слишком сложно измерить прямым измерением. Встречаются случаи, когда величину можно измерить только косвенным путём, например размеры астрономического или внутриатомного порядка.
Совокупные - это такие измерения, при которых значения измеряемых величин определяют по результатам повторных измерений одной или нескольких одноименных величин при различных сочетаниях мер или этих величин. Значение искомой величины определяют решением системы уравнений, составляемых по результатам нескольких прямых измерений. Примером совокупных измерений является определение массы отдельных гирь набора, т.е. проведение калибровки по известной массе одной из них и по результатам прямых измерений и сравнения масс различных сочетаний гирь. Рассмотрим пример совокупных измерений, который заключается в проведении калибровки разновеса, состоящего из гирь массой 1, 2, 2*, 5, 10 и 20 кг. Ряд гирь (кроме 2*) представляет собой образцовые массы разного размера. Звездочкой отмечена гиря, имеющая значение, отличное от точного значения 2 кг. Калибровка состоит в определении массы каждой гири по одной образцовой гире, например по гире массой 1 кг. Меняя комбинацию гирь, проведем измерения. Составим уравнения, где цифрами обозначим массу отдельных гирь, например 1обр обозначает массу образцовой гири в 1 кг, тогда: 1 = 1обр + a; 1 + 1обр = 2 + b; 2* = 2 + c; 1 + 2 + 2* = 5 + d и т.д. Дополнительные грузы, которые необходимо прибавлять к массе гири указанной в правой части уравнения или отнимать от неё для уравновешивания весов, обозначены a, b, c, d . Решив эту систему уравнений, можно определить значение массы каждой гири.
Совместные - это измерения, производимые одновременно двух или нескольких разноименных величин для нахождения функциональной зависимости между ними. Примерами совместных измерений являются определение длины стержня в зависимости от его температуры или зависимости электрического сопротивления проводника от давления и температуры.
Точность измерений — степень близости результата измерений к принятому опорному значению.
По условиям, определяющим точность результата, измерения делятся на три класса.
1. Измерения максимально возможной точности, достижимой при существующем уровне техники. В этот класс включены все высокоточные измерения и в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин. Сюда относятся также измерения физических констант, прежде всего универсальных, например измерение абсолютного значения ускорения свободного падения.
2. Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения. В этот класс включены измерения, выполняемые лабораториями государственного контроля (надзора) за соблюдением требований технических регламентов, а также состоянием измерительной техники и заводскими измерительными лабораториями. Эти измерения гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого, заранее заданного значения.
3. Технические измерения, в которых погрешность результата определяется характеристиками средств измерений. Примерами технических измерений являются измерения, выполняемые в процессе производства на промышленных предприятиях, в сфере услуг и др.
В зависимости от способа выражения результатов измерений различают абсолютные и относительные измерения.
Абсолютными называют измерения, которые основаны на прямых измерениях одной или нескольких основных величин или на использовании значений физических констант. Примерами абсолютных измерений являются: определение длины в метрах, силы электрического тока в амперах, ускорения свободного падения в метрах на секунду в квадрате.
Относительными называют измерения, при которых искомую величину сравнивают с одноименной величиной, играющей роль единицы или принятой за исходную. Примерами относительных измерений являются: измерение диаметра обечайки по числу оборотов мерного ролика, измерение относительной влажности воздуха, определяемой как отношение количества водяных паров в 1 куб.м воздуха к количеству водяных паров, которое насыщает 1 куб.м воздуха при данной температуре.
В зависимости от способа получения измерительной информации, измерения могут быть контактными и бесконтактными.
В зависимости от типа, применяемых измерительных средств, различают инструментальный, экспертный, эвристический и органолептический методы измерений.
Инструментальный метод основан на использовании специальных технических средств, в том числе автоматизированных и автоматических.
Экспертный метод оценки основан на использовании суждений группы специалистов.
Эвристические методы оценки основаны на интуиции.
Органолептические методы оценки основаны на использовании органов чувств человека. Оценка состояния объекта может проводиться поэлементными и комплексными измерениями. Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности. Например, эксцентриситета, овальности, огранки цилиндрического вала. Комплексный метод характеризуется измерением суммарного показателя качества, на который оказывают влияние отдельные его составляющие. Например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.; контроль положения профиля по предельным контурам и т. п.