
- •1. Классификация виэ
- •2. Роль виэ в балансах топливно-энергетических ресурсов мира и России.
- •3. Стимулы и предпосылки для развития виэ
- •4. Развитие ветроэнергетики в мире.
- •5. Валовой потенциал ветрового потока.
- •6. Устройство ветроэлектрических установок.
- •7 Эксплуатационные и технико-экономические показатели ветроэлектрических агрегатов
- •9. Экономические параметры ветроустановок.
- •10. Виды и месторождения сконцентрированной геотермальной энергии
- •11. Устройство и параметры гидротермальных электрических станций
- •12. Валовые ресурсы биомассы в мире.
- •13. Формула д.И. Менделеева для расчёта теплотворной способности сухой биомассы. Учёт влажности биомассы.
- •14. Технологии получения топлив из биомассы.
- •15. Аэробное и анаэробное сбраживание биомассы
- •16. Пиролиз и гидролиз древесной биомассы.
- •17.Технологии получения биогазов
- •18. Ресурсы древесной биомассы: валовый, технический и экономический потенциал.
- •19. Классификация и ресурсы отходов древесной биомассы.
- •21. Структура и ресурсы твердых бытовых отходов.
- •22 Технологии переработки твердых бытовых отходов.
- •1. Депонирование (захоронение) тбо на полигонах
- •2. Компостирование
- •3.Пиролиз и газификация
- •4. Сжигание
- •5. Плазменная переработка отходов.
- •23. Сравнительный технико-экономический анализ виэ и традиционных видов энергии
- •24. Уравнение Бернулли и расчет мощности водного потока
- •25. Определение мощность гэс
- •26. Схемы использования водной энергии.
- •27. Характеристики водохранилищ гэс
- •28. Устройство и основное оборудование гэс.
- •29. Водноэнергетический расчет гэс с водохранилищем.
- •30. Способы аккумулирования различных видов энергии
- •31. Типы аккумуляторов и их технико-экономические характеристики.
- •32. Устройство, характеристики топливных элементов
- •33. Ресурсы и технологии использования природных битумов
- •34. Сланцеподобные массивы и технологии их образования
- •35. Нетрадиционные технологии энергетического использования каменного угля
- •37. Углеводородные газы в нетрадиционных агрегатно-фазовых состояниях.
- •38. Ресурсы древесной биомассы Республики Карелия
26. Схемы использования водной энергии.
Различают три основные схемы использования водной энергии:
плотинная, при которой напор создается плотиной;
деривационная, напор создается преимущественно с помощью деривации, выполняемой в виде канала, туннеля или трубопровода;
плотинно-деривационная, в которой напор создается плотиной и деривацией.
Плотинная схема использования водной энергии обычно выполняется при больших расходах воды и малых уклонах ее свободной поверхности. Посредством плотины подпирается река и создается напор воды Н0. Подпор воды от плотины распространяется вверх по реке. Разность уровней воды в верховье водохранилища и у плотины равна Н0 + ∆h. Общее падение уровня реки на участке равно Н. Часть общего падения уровня реки ∆h будет потеряна при движении воды в верхнем бьефе. Сосредоточенный перепад уровней, т.е. напор, будет равен H0 = Н - ∆h. Плотинная схема в зависимости от напора может быть русловой и приплотинной.
Русловой называется такая гидроэлектростанция, в которой здание ГЭС входит в состав напорного фронта. В этом случае здание ГЭС воспринимает полное давление воды со стороны верхнего бьефа. Русловая ГЭС строится при сравнительно небольших напорах, например гидроэлектростанции Волжско-Камского каскада.
При средних и больших напорах, превышающих диаметр турбины более чем в 6 раз, здание ГЭС не может входить в состав напорных сооружений. Здание ГЭС располагается за плотиной и не воспринимает полное давление воды, а гидроэлектростанция называется приплотинной. Вода к турбинам приплотинной ГЭС подводится водоводами, размещенными в теле или поверх бетонной плотины, под грунтовой плотиной или туннелями в обход плотины. Примерами могут служить Красноярская, Братская и Саяно-Шушенская ГЭС.
Деривационная схема использования водной энергии обычно выполняется при малых расходах воды и больших уклонах ее свободной поверхности. В деривационной схеме плотина возводится невысокой, лишь обеспечивающей забор воды в деривацию, а напор создается за счет разности уклонов воды в реке и деривации. Деривация может выполняться безнапорной в виде открытого канала или безнапорного туннеля. Чаще деривация бывает напорной в виде напорного туннеля или напорного трубопровода.
В плотинно-деривационной, или комбинированной, схеме используются наилучшим образом свойства предыдущих схем. Плотина создает водохранилище, а падение уровня реки ниже плотины используется деривацией. Чем выше по течению реки располагается плотина, тем меньше ее высота, меньше объем водохранилища и затопление территории, но удлиняется деривация и увеличиваются потери в ней напора.
Месторасположение плотины, тип и длина деривации выбираются на основе технико-экономического обоснования.
Для более полного использования падения реки и ее стока возводят каскад гидроэлектростанций, т.е. ряд ГЭС, последовательно расположенных по длине водотока от истока до устья. В составе каскада могут быть русловые, приплотинные или деривационные ГЭС. Каскады ГЭС построены и строятся на многих реках России: Волге, Каме, Енисее, Ангаре, Свири, Сулаке и др.
|
|
||||||||||||
|
|