
- •1 Основные понятия теории множеств.
- •Операции над множествами.
- •5 Бесконечно малые функции.
- •6. Бесконечно большие функции и их связь с бесконечно малыми.
- •7.Основные теоремы о пределах.
- •9Числовая последовательность.
- •Число е.
- •10.Сравнение бесконечно малых функций.
- •11. Непрерывность функции в точке.
- •13 Производная функции, ее геометрический и физический смысл.
- •15.Производная сложной функции.
- •17.Уравнение касательной и нормали к кривой.
- •Свойства дифференциала.
- •18Производные и дифференциалы высших порядков.
- •19. Инвариантная форма записи дифференциала.
- •21.Векторная функция скалярного аргумента.
- •23Теоремы о среднем.
- •24. Теорема Лагранжа.
- •25. Раскрытие неопределенностей.
- •27.Точки экстремума.
- •29.Выпуклость и вогнутость кривой.
- •30.Асимптоты.
- •31.Схема исследования функций
- •33Интегральное исчисление.
- •35.Способ подстановки (замены переменных).
- •36. Интегрирование по частям.
- •37. Комплексные числа.
- •Тригонометрическая форма числа.
- •Действия с комплексными числами.
- •38. Разложение многочлена на множители.
- •39. Интегрирование простейших рациональных дробей.
- •40. Разложение правильной рациональной дроби на простейшие дроби. Интегрирование рациональньных дробей
- •42. Интегрирование иррациональных функций.
- •43. Задачи, приводящие к определенному интегралу.
- •44. Основные св-ва определенного интеграла
- •45 Теорема о среднем значении для определенного интеграла, производная интеграла по переменной верхней границе
- •46. Формула Ньютона–Лейбница вычисления определенного интеграла
- •47. Замена переменной и интегрирование по частям в определенном интеграле
- •48. Приложение определенного интеграла к вычислению площади в декартовых и и полярных координатах
- •49. Приложение определенного интеграла в вычислению объемов тел.
- •50. Длина дуги кривой. Дифференциал дуги.
- •51. Общий метод решения задач методом интегральных сумм
- •52. Несобственные интегралы с бесконечными границами.
- •53. Несобственные интегралы от разрывных функций
- •54. Признаки сходимости несобственных интегралов
- •55.. Кривизна плоской линии
50. Длина дуги кривой. Дифференциал дуги.
Вычисление длины дуги кривой.
Длина
ломаной линии, которая соответствует
дуге, может быть найдена как
.
Тогда
длина дуги равна
.
Из
геометрических соображений:
В
то же время
Тогда
Т.е.
Если уравнение кривой задано параметрически, то с учетом правил вычисления производной параметрически заданной функции получаем
,
где х = (t) и у = (t).
Если задана пространственная кривая, и х = (t), у = (t) и z = Z(t), то
Если кривая задана в полярных координатах, то
,
= f().
51. Общий метод решения задач методом интегральных сумм
Пусть на отрезке [a, b] задана непрерывная функция f(x).
Обозначим
m
и M
наименьшее и наибольшее значение функции
на отрезке [a,
b]
Разобьем отрезок [a, b] на части (не обязательно одинаковые) n точками.
x0 < x1 < x2 < … < xn
Тогда x1 – x0 = x1, x2 – x1 = x2, … ,xn – xn-1 = xn;
На каждом из полученных отрезков найдем наименьшее и наибольшее значение функции.
[x0, x1] m1, M1; [x1, x2] m2, M2; … [xn-1, xn] mn, Mn.
Составим суммы:
n
= m1x1
+ m2x2
+ … +mnxn
=
n
= M1x1
+ M2x2
+ … + Mnxn
=
Сумма называется нижней интегральной суммой, а сумма – верхней интегральной суммой.
Т.к. mi Mi, то n n, а m(b – a) n n M(b – a)
Внутри каждого отрезка выберем некоторую точку .
x0 < 1 < x1, x1 < < x2, … , xn-1 < < xn.
Найдем значения функции в этих точках и составим выражение, которое называется интегральной суммой для функции f(x) на отрезке [a, b].
Sn
= f(1)x1
+ f(2)x2
+ … + f(n)xn
=
Тогда можно записать: mixi f(i)xi Mixi
Следовательно,
Геометрически это представляется следующим образом: график функции f(x) ограничен сверху описанной ломаной линией, а снизу – вписанной ломаной.
Обозначим maxxi – наибольший отрезок разбиения, а minxi – наименьший. Если maxxi 0, то число отрезков разбиения отрезка [a, b] стремится к бесконечности.
Если
, то
Определение: Если при любых разбиениях отрезка [a, b] таких, что maxxi 0 и произвольном выборе точек i интегральная сумма стремится к пределу S, который называется определенным интегралом от f(x) на отрезке [a, b].
Обозначение
:
а – нижний предел, b – верхний предел, х – переменная интегрирования, [a, b] – отрезок интегрирования.
Определение:
Если для функции f(x)
существует предел
то функция называется интегрируемой
на отрезке [a,
b].
Также
верны утверждения:
Теорема: Если функция f(x) непрерывна на отрезке [a, b], то она интегрируема на этом отрезке.
52. Несобственные интегралы с бесконечными границами.
53. Несобственные интегралы от разрывных функций
Интеграл от разрывной функции.
Если
в точке х = с функция либо неопределена,
либо разрывна, то
Если
интеграл
существует, то интеграл
- сходится, если интеграл
не существует, то
- расходится.
Если
в точке х = а функция терпит разрыв, то
.
Если функция f(x) имеет разрыв в точке b на промежутке [a, с], то
Таких точек внутри отрезка может быть несколько.
Если сходятся все интегралы, входящие в сумму, то сходится и суммарный интеграл.