
- •1 Основные понятия теории множеств.
- •Операции над множествами.
- •5 Бесконечно малые функции.
- •6. Бесконечно большие функции и их связь с бесконечно малыми.
- •7.Основные теоремы о пределах.
- •9Числовая последовательность.
- •Число е.
- •10.Сравнение бесконечно малых функций.
- •11. Непрерывность функции в точке.
- •13 Производная функции, ее геометрический и физический смысл.
- •15.Производная сложной функции.
- •17.Уравнение касательной и нормали к кривой.
- •Свойства дифференциала.
- •18Производные и дифференциалы высших порядков.
- •19. Инвариантная форма записи дифференциала.
- •21.Векторная функция скалярного аргумента.
- •23Теоремы о среднем.
- •24. Теорема Лагранжа.
- •25. Раскрытие неопределенностей.
- •27.Точки экстремума.
- •29.Выпуклость и вогнутость кривой.
- •30.Асимптоты.
- •31.Схема исследования функций
- •33Интегральное исчисление.
- •35.Способ подстановки (замены переменных).
- •36. Интегрирование по частям.
- •37. Комплексные числа.
- •Тригонометрическая форма числа.
- •Действия с комплексными числами.
- •38. Разложение многочлена на множители.
- •39. Интегрирование простейших рациональных дробей.
- •40. Разложение правильной рациональной дроби на простейшие дроби. Интегрирование рациональньных дробей
- •42. Интегрирование иррациональных функций.
- •43. Задачи, приводящие к определенному интегралу.
- •44. Основные св-ва определенного интеграла
- •45 Теорема о среднем значении для определенного интеграла, производная интеграла по переменной верхней границе
- •46. Формула Ньютона–Лейбница вычисления определенного интеграла
- •47. Замена переменной и интегрирование по частям в определенном интеграле
- •48. Приложение определенного интеграла к вычислению площади в декартовых и и полярных координатах
- •49. Приложение определенного интеграла в вычислению объемов тел.
- •50. Длина дуги кривой. Дифференциал дуги.
- •51. Общий метод решения задач методом интегральных сумм
- •52. Несобственные интегралы с бесконечными границами.
- •53. Несобственные интегралы от разрывных функций
- •54. Признаки сходимости несобственных интегралов
- •55.. Кривизна плоской линии
36. Интегрирование по частям.
Способ основан на известной формуле производной произведения:
(uv) = uv + vu
где u и v – некоторые функции от х.
В дифференциальной форме: d(uv) = udv + vdu
Проинтегрировав,
получаем:
,
а в соответствии с приведенными выше
свойствами неопределенного интеграла:
или
;
Получили формулу интегрирования по частям, которая позволяет находить интегралы многих элементарных функций.
Пример
Как
видно, последовательное применение
формулы интегрирования по частям
позволяет постепенно упростить функцию
и привести интеграл к табличному.
Пример.
Видно,
что в результате повторного применения
интегрирования по частям функцию не
удалось упростить к табличному виду.
Однако, последний полученный интеграл
ничем не отличается от исходного. Поэтому
перенесем его в левую часть равенства.
Таким образом, интеграл найден вообще без применения таблиц интегралов.
Прежде чем рассмотреть подробно методы интегрирования различных классов функций, приведем еще несколько примеров нахождения неопределенных интегралов приведением их к табличным.
Пример.
Пример.
Пример.
37. Комплексные числа.
Определение.
Комплексным
числом z
называется
выражение
,
где a
и
b
– действительные числа, i
– мнимая единица, которая определяется
соотношением:
При этом число a называется действительной частью числа z (a = Re z), а b- мнимой частью (b = Im z).
Если a =Re z =0, то число z будет чисто мнимым, если b = Im z = 0, то число z будет действительным.
Определение.
Числа
и
называются
комплексно
– сопряженными.
Определение.
Два комплексных числа
и
называются равными, если соответственно
равны их действительные и мнимые части:
Определение. Комплексное число равно нулю, если соответственно равны нулю действительная и мнимая части.
Понятие комплексного числа имеет геометрическое истолкование. Множество комплексных чисел является расширением множества действительных чисел за счет включения множества мнимых чисел. Комплексные числа включают в себя все множества чисел, которые изучались ранее. Так натуральные, целые, рациональные, иррациональные, действительные числа являются, вообще говоря, частными случаями комплексных чисел.
Если любое действительное число может быть геометрически представлено в виде точки на числовой прямой, то комплексное число представляется точкой на плоскости, координатами которой будут соответственно действительная и мнимая части комплексного числа. При этом горизонтальная ось будет являться действительной числовой осью, а вертикальная - мнимой осью.
Таким образом, на оси ОХ располагаются действительные числа, а на оси ОY – чисто мнимые.
С помощью подобного геометрического представления можно представлять числа в так называемой тригонометрической форме.
Тригонометрическая форма числа.
Из
геометрических соображений видно, что
.
Тогда комплексное число можно представить
в виде:
Такая
форма записи называется тригонометрической
формой записи комплексного числа.
При этом величина r называется модулем комплексного числа, а угол наклона - аргументом комплексного числа.
.
Из геометрических соображений видно:
Очевидно,
что комплексно – сопряженные числа
имеют одинаковые модули и противоположные
аргументы.