
- •1 Основные понятия теории множеств.
- •Операции над множествами.
- •5 Бесконечно малые функции.
- •6. Бесконечно большие функции и их связь с бесконечно малыми.
- •7.Основные теоремы о пределах.
- •9Числовая последовательность.
- •Число е.
- •10.Сравнение бесконечно малых функций.
- •11. Непрерывность функции в точке.
- •13 Производная функции, ее геометрический и физический смысл.
- •15.Производная сложной функции.
- •17.Уравнение касательной и нормали к кривой.
- •Свойства дифференциала.
- •18Производные и дифференциалы высших порядков.
- •19. Инвариантная форма записи дифференциала.
- •21.Векторная функция скалярного аргумента.
- •23Теоремы о среднем.
- •24. Теорема Лагранжа.
- •25. Раскрытие неопределенностей.
- •27.Точки экстремума.
- •29.Выпуклость и вогнутость кривой.
- •30.Асимптоты.
- •31.Схема исследования функций
- •33Интегральное исчисление.
- •35.Способ подстановки (замены переменных).
- •36. Интегрирование по частям.
- •37. Комплексные числа.
- •Тригонометрическая форма числа.
- •Действия с комплексными числами.
- •38. Разложение многочлена на множители.
- •39. Интегрирование простейших рациональных дробей.
- •40. Разложение правильной рациональной дроби на простейшие дроби. Интегрирование рациональньных дробей
- •42. Интегрирование иррациональных функций.
- •43. Задачи, приводящие к определенному интегралу.
- •44. Основные св-ва определенного интеграла
- •45 Теорема о среднем значении для определенного интеграла, производная интеграла по переменной верхней границе
- •46. Формула Ньютона–Лейбница вычисления определенного интеграла
- •47. Замена переменной и интегрирование по частям в определенном интеграле
- •48. Приложение определенного интеграла к вычислению площади в декартовых и и полярных координатах
- •49. Приложение определенного интеграла в вычислению объемов тел.
- •50. Длина дуги кривой. Дифференциал дуги.
- •51. Общий метод решения задач методом интегральных сумм
- •52. Несобственные интегралы с бесконечными границами.
- •53. Несобственные интегралы от разрывных функций
- •54. Признаки сходимости несобственных интегралов
- •55.. Кривизна плоской линии
31.Схема исследования функций
Процесс исследования функции состоит из нескольких этапов. Для наиболее полного представления о поведении функции и характере ее графика необходимо отыскать:
1.)Область существования функции.
Это понятие включает в себя и область значений и область определения функции.
2.)Точки разрыва. (Если они имеются).
3.)Интервалы возрастания и убывания.
4.)Точки максимума и минимума.
5.)Максимальное и минимальное значение функции на ее области определения.
6.)Области выпуклости и вогнутости.
7.)Точки перегиба.(Если они имеются).
8.)Асимптоты.(Если они имеются).
9.)Построение графика.
Применение этой схемы рассмотрим на примере.
Пример.
Исследовать
функцию
и
построить ее график.
Находим область существования функции. Очевидно, что областью определения функции является область (-; -1) (-1; 1) (1; ).
В свою очередь, видно, что прямые х = 1, х = -1 являются вертикальными асимптотами кривой.
Областью значений данной функции является интервал (-; ).
Точками разрыва функции являются точки х = 1, х = -1.
Находим критические точки.
Найдем производную функции
Критические
точки: x
= 0; x
= -
;
x
=
;
x
= -1; x
= 1.
Найдем вторую производную функции
Определим
выпуклость и вогнутость кривой на
промежутках.
- < x < - , y < 0, кривая выпуклая
- < x < -1, y < 0, кривая выпуклая
-1 < x < 0, y > 0, кривая вогнутая
0 < x < 1, y < 0, кривая выпуклая
1 < x < , y > 0, кривая вогнутая
< x < , y > 0, кривая вогнутая
Находим промежутки возрастания и убывания функции. Для этого определяем знаки производной функции на промежутках.
- < x < - , y > 0, функция возрастает
- < x < -1, y < 0, функция убывает
-1 < x < 0, y < 0, функция убывает
0 < x < 1, y < 0, функция убывает
1 < x < , y < 0, функция убывает
< x < , y > 0, функция возрастает
Видно, что точка х = - является точкой максимума, а точка х = является точкой минимума. Значения функции в этих точках равны соответственно 3 /2 и -3 /2.
Про вертикальные асимптоты было уже сказано выше. Теперь найдем наклонные асимптоты.
Итого,
уравнение наклонной асимптоты – y
= x.
Построим график функции:
32.Формула Тейлора.Тейлор (1685-1731) – английский математик
Теорема Тейлора. 1) Пусть функция f(x) имеет в точке х = а и некоторой ее окрестности производные порядка до (n+1) включительно.{ Т.е. и все предыдущие до порядка n функции и их производные непрерывны и дифференцируемы в этой окрестности}.
2) Пусть х- любое значение из этой окрестности, но х а.
Тогда между точками х и а найдется такая точка , что справедлива формула:
это
выражение называется формулой
Тейлора,
а выражение:
называется остаточным членом в форме Лагранжа.
Доказательство.
Представим функцию f(x)
в виде некоторого многочлена Pn(x),
значение которого в точке х = а равно
значению функции f(x),
а значения его производных равно
значениям соответствующих производных
функции в точке х = а.
(1)
Многочлен Pn(x) будет близок к функции f(x). Чем больше значение n, тем ближе значения многочлена к значениям функции, тем точнее он повторяет функцию.
Представим
этот многочлен с неопределенными пока
коэффициентами:
(2)
Для
нахождения неопределенных коэффициентов
вычисляем производные многочлена в
точке х = а и составляем систему уравнений:
(3)
Решение этой системы при х = а не вызывает затруднений, получаем:
…………………….
Подставляя полученные значения Ci в формулу (2), получаем:
Как было замечено выше, многочлен не точно совпадает с функцией f(x), т.е. отличается от нее на некоторую величину. Обозначим эту величину Rn+1(x). Тогда:
f(x) = Pn(x) + Rn+1(x)
Теорема доказана.
Рассмотрим подробнее величину Rn+1(x).
Как видно на рисунке, в точке х = а значение мно-
гочлена в точности совпадает со значением функции. Однако, при удалении от точки х = а расхождение значений увеличивается. Иногда используется другая запись для Rn+1(x). Т.к. точка (a, x), то найдется такое число из интервала 0 < < 1, что = a + (x – a).
Тогда можно записать:
Тогда, если принять a = x0, x – a = x, x = x0 + x, формулу Тейлора можно записать в виде:
где
0 <
< 1
Если принять n =0, получим: f(x0 + x) – f(x0) = f(x0 + x)x – это выражение называется формулой Лагранжа. (Жозеф Луи Лагранж (1736-1813) французский математик и механик).
Формула Тейлора имеет огромное значение для различных математических преобразований. С ее помощью можно находить значения различных функций, интегрировать, решать дифференциальные уравнения и т.д.
При рассмотрении степенных рядов будет более подробно описаны некоторые особенности и условия разложения функции по формуле Тейлора.