
- •1.Место и роль математики в арсенале управленческих приемов
- •2.Историческая справка становления и развития исследования операций
- •3.Постановка задачи принятия решений
- •4.Основные этапы разрешения проблемы принятия решений
- •5.Классификация задач принятия решений
- •6.Классификация математических методов принятия решений
- •7.Классификация математических моделей принятия решений
- •8. Схема процесса принятия решений
- •9. Декомпозиция задач принятия решений
- •10. Оперативные приемы принятия решений
- •11. Пример подготовки решения на основе макроэкономических данных
- •12. Критерий принятия решений. Необходимость и условия его ввода. Функция предпочтения.
- •13. Минимальный критерий принятия решения. Его определение, достоинства, недостатки. Порядок применения
- •14. Критерий Байеса-Лапласа
- •15. Критерий Сэвиджа
- •16. Критерий Гурвица
- •17. Критерий Ходжа-Лемана
- •18. Критерий Гермейера
- •19. Среды решения и выработка решения в условиях определенности
- •20. Детерминированные методы принятия решений. Матричная модель производственной программы.
- •21. Классификация оптимизационных задач принятия решений.
- •22. Линейное программирование в принятии решений. Классические примеры.
- •23. Симплекс-метод решения задач линейного программирования.
- •24. Двойственная задача линейного программирования.
- •25. Модель оптимального планирования производства.
- •26. Экономические характеристики оптимального плана.
- •27. Транспортная задача.
- •Итерационное улучшение плана перевозок
- •Решение с помощью теории графов
- •28. Алгоритм метода северо-западного угла.
- •29. Метод потенциалов решения транспортной задачи.
- •30. Целочисленное программирование в принятии решений.
- •31. Динамическое программирование в принятии решений.
- •32. Нелинейное программирование в принятии решений.
- •33. Дискретное программирование в принятии решений.
- •34. Стохастическое программирование в принятии решений
- •35. Особенности применения методов математического программирования в принятии решений
- •36. Многокритериальная оптимизация в принятии решений
- •37. Многокритериальные задачи принятия решений: различные методы свертки критериев
- •38. Задачи оптимизации и нечеткие переменные
- •39. Графы в принятии решений
- •40. Основные понятия теории графов
- •41. Кратчайший путь на графе
- •42. Задача коммивояжера
- •43. Кратчайшее дерево на графе
- •44. Критический путь на графе
- •45. Потоки в сетях в принятии решений
- •46. Анализ последовательности решения с использованием дерева решения
- •47. Классическая схема принятия решений в условиях неопределенности.
- •48. Методы теории игр (теория конфликтов), роль информации и равновесие по Нэшу в теории принятия решений.
- •49. Матрицы последствий и рисков
- •50. Принятие решений в условиях полной неопределенности
- •51. Пр в условиях частичной неопределенности
- •52. Ситуации в практике менеджмента, допускающие игровой подход
- •53. Риск в принятии решений как среднее квадратическое отклонение
- •54. Измерение относительного риска: компромисс между риском и прибылью
- •55. Математические методы определения полезности, страха риска и премии за риск
- •56. Байесовский подход
- •57. Принятие решений группой лиц. Теорема Эрроу
- •58. Конфликтные ситуации в принятии решений. Кооперативные игры
- •59. Оптимальность по Парето. Переговорное множество
- •60. Игры с нулевой суммой и их использование в принятии решений
- •61. Моделирование и экспертные оценки при принятии решений
- •62. Методы учета неопределенностей принятия решений: вероятностные модели, теория нечеткости, интервальная математика.
- •63. Эконометрические методы принятия решений. Основные понятия и определения.
- •64. Особенности использования эконометрических методов в принятии решений.
- •65. Основные проблемы использования эконометрических методов в принятии решений.
- •66. Классификация эконометрических методов и моделей в принятия решений.
- •1) Классификация эконометрических моделей по целевому назначению:
- •2) Классификация эконометрических моделей по исследуемым экономическим процессам и содержательной проблематике. При этом выделяются:
- •3) Классификация эконометрических моделей на дескриптивные и нормативные модели:
- •4) Классификация эконометрических моделей по характеру отражения причинно-следственных связей. При этом выделяют:
- •5) Классификация эконометрических моделей по способам отражения фактора времени. При этом выделяют:
- •67. Использование регрессионных моделей в принятии решений. Пример.
- •68. Использование временных рядов в принятии решений. Пример.
- •69. Использование систем одновременных уравнений в принятии решений. Пример.
- •70. Высокие эконометрические технологии и их возможности для принятия решений.
43. Кратчайшее дерево на графе
Минимальное остовное дерево (или минимальное покрывающее дерево) в связанном, взвешенном, неориентированном графе — это остовное дерево этого графа, имеющее минимальный возможный вес, где под весом дерева понимается сумма весов входящих в него рёбер.
Существует несколько алгоритмов для нахождения минимального остовного дерева. Некоторые наиболее известные из них перечислены ниже:
Алгоритм Прима;
Алгоритм Краскала (или алгоритм Крускала).
Алгоритм Прима
Алгоритм Прима обладает тем свойством, что ребра в множестве А всегда образуют единое дерево. Дерево начинается с произвольной корневой вершины г и растет до тех пор, пока не охватит все вершины в V. На каждом шаге к дереву А добавляется легкое ребро, соединяющее дерево и отдельную вершину из оставшейся части графа. Данное правило добавляет только безопасные для А ребра; следовательно, по завершении алгоритма ребра в А образуют минимальное остовное дерево. Данная стратегия является жадной, поскольку на каждом шаге к дереву добавляется ребро, которое вносит минимально возможный вклад в общий вес.
Алгоритм Краскала
Алгоритм Крускала находит безопасное ребро для добавления в растущий лес путем поиска ребра (u, v) с минимальным весом среди всех ребер, соединяющих два дерева в лесу. Обозначим два дерева, соединяемые ребром (u, v), как С1 и С2. (u, v) — безопасное для С1 ребро. Алгоритм Крускала является жадным, поскольку на каждом шаге он добавляет к лесу ребро с минимально возможным весом.
44. Критический путь на графе
Критический путь графа – это путь максимальной длины в ориентированном ациклическом графе.
При аналитическом задании графа нахождение длины его критического пути как функции внешних параметров задачи является одной из важных задач при распараллеливании алгоритмов. При этом даже в случае, когда алгоритм относится к простому, например, линейному классу, заранее нельзя предугадать, к какому классу функций будет относиться длина критического пути. Один из способов определения длины критического пути предполагает движение от конечной вершины к начальной с определением в процессе движения наиболее раннего времени наступления события.
Критическим путем сетевого графика называется любой путь (то есть последовательность взаимосвязанных событий), ведущий из начального события в конечное событие и целиком состоящий из работ, задержка которых на время ∆t вызовет задержку окончания всего проекта на ∆t времени. Таким образом, для своевременного окончания проекта все события на критическом пути должны быть выполнены без задержек. Критический путь может быть определен как путь из начального в конечное событие, имеющий нулевой резерв времени (нет резерва времени).
Для нахождения критического пути на сетевом графике необходимо оценить резервы времени (ресурсов) для событий (работ) графика: определить для каждого события наиболее ранний и наиболее поздний сроки его наступления (из всех возможных, допускающих окончание всего проекта в срок).
45. Потоки в сетях в принятии решений
Задачи теории потоков в сетях являются одними из основных в исследовании операций, computer science и инженерном деле.
К теории потоков относятся различные задачи, которые можно классифицировать следующим образом. Задачи транспортного типа – транспортная задача, поиск пути минимальной длины, поиск циклов отрицательного веса (неоптимальных перевозок) и т. д. Задачи определения существования потока – задача о максимальном потоке и, двойственная к ней, задача поиска минимального разреза. А также задача о поиске обобщенного потока – потока с потерями и приобретениями.
В 1956 году классическая задача поиска максимального потока была поставлена Фордом и Фалкерсоном и записана уже не в терминах задачи линейного программирования, а в терминах новой теории – теории потоков. Ими же отдельно сформулирована задача поиска максимального потока и предложен первый алгоритм ее решения.
Сетью называется связный граф, в котором заданы “пропускные способности” ребер. Заметим, что сети имеют огромные приложения, в частности, “сети планирования” (имеется в виду планирование производства некоторых новых, достаточно сложных изделий), где “пропускные способности” ребер – это время, за которое нужно из нескольких узлов изделия (вершин графа) получить другой (более сложный) узел.
Потоком в сети между вершиной t (источником) и s (стоком) называется набор чисел cij, (т. е. количество условного “груза”, перевозимого из вершины с номером i в вершину с номером j), удовлетворяющих четырем условиям:
1) числа cij Ј 0, причем если cij > 0, то cji = 0 (нет встречных перевозок);
2) числа cij Ј qij (соответствующих пропускных способностей ребер);
3) если вершина с номером i – промежуточная (не совпадает с источником и стоком), то
т. е. количество “груза”, вывозимого из вершины i, равно количеству “груза”, ввозимого в эту вершину;
4) количество “груза”, вывозимого из источника t, должно быть равно количеству груза, ввозимого в сток s:
Число А называется величиной данного потока или просто потоком между t и s.
Для дальнейшего нужно следующее определение:
Пусть имеется некоторое сечение между вершинами t и s. Тогда величиной сечения называется сумма пропускных способностей ребер, входящих в это сечение. Сечение называется минимальным (максимальным), если его величина минимальна (максимальна).
Теорема Форда – Фалкерсона (1955). Максимальный поток между вершинами t и s равен величине минимального сечения между этими вершинами.
АЛГОРИТМ ФОРДА - ФАЛКЕРСОНА
Алгоритм начинает работу с начального допустимого потока (возможно, нулевого). Затем осуществляются попытки увеличить величину потока с помощью систематического поиска всех возможных цепей из s в t, на которых можно увеличить величину потока (дополняющие цепи).
Поиск дополняющих цепей производится путем расстановки меток, которые указывают, на каких дугах и на сколько можно увеличить поток. Когда найдена одна из таких цепей, поток вдоль нее увеличивается. После чего все метки стираются, и вновь полученный поток используется в качестве исходного при новой расстановке меток.
Алгоритм заканчивает работу, когда нельзя найти ни одну дополняющую цепь. Последний найденный поток является максимальным.
Актуальность задачи о максимальном потоке постоянно возрастает в месте со строительством трубопроводов, новых дорог, роста пользователей Интернета и любых других сетей. Поэтому быстрое и точное её решение крайне необходимо во всех сферах нашей деятельности, где хоть как-то встает вопрос об перемещение чего-либо куда-либо с максимальной рациональностью.