
- •1.Место и роль математики в арсенале управленческих приемов
- •2.Историческая справка становления и развития исследования операций
- •3.Постановка задачи принятия решений
- •4.Основные этапы разрешения проблемы принятия решений
- •5.Классификация задач принятия решений
- •6.Классификация математических методов принятия решений
- •7.Классификация математических моделей принятия решений
- •8. Схема процесса принятия решений
- •9. Декомпозиция задач принятия решений
- •10. Оперативные приемы принятия решений
- •11. Пример подготовки решения на основе макроэкономических данных
- •12. Критерий принятия решений. Необходимость и условия его ввода. Функция предпочтения.
- •13. Минимальный критерий принятия решения. Его определение, достоинства, недостатки. Порядок применения
- •14. Критерий Байеса-Лапласа
- •15. Критерий Сэвиджа
- •16. Критерий Гурвица
- •17. Критерий Ходжа-Лемана
- •18. Критерий Гермейера
- •19. Среды решения и выработка решения в условиях определенности
- •20. Детерминированные методы принятия решений. Матричная модель производственной программы.
- •21. Классификация оптимизационных задач принятия решений.
- •22. Линейное программирование в принятии решений. Классические примеры.
- •23. Симплекс-метод решения задач линейного программирования.
- •24. Двойственная задача линейного программирования.
- •25. Модель оптимального планирования производства.
- •26. Экономические характеристики оптимального плана.
- •27. Транспортная задача.
- •Итерационное улучшение плана перевозок
- •Решение с помощью теории графов
- •28. Алгоритм метода северо-западного угла.
- •29. Метод потенциалов решения транспортной задачи.
- •30. Целочисленное программирование в принятии решений.
- •31. Динамическое программирование в принятии решений.
- •32. Нелинейное программирование в принятии решений.
- •33. Дискретное программирование в принятии решений.
- •34. Стохастическое программирование в принятии решений
- •35. Особенности применения методов математического программирования в принятии решений
- •36. Многокритериальная оптимизация в принятии решений
- •37. Многокритериальные задачи принятия решений: различные методы свертки критериев
- •38. Задачи оптимизации и нечеткие переменные
- •39. Графы в принятии решений
- •40. Основные понятия теории графов
- •41. Кратчайший путь на графе
- •42. Задача коммивояжера
- •43. Кратчайшее дерево на графе
- •44. Критический путь на графе
- •45. Потоки в сетях в принятии решений
- •46. Анализ последовательности решения с использованием дерева решения
- •47. Классическая схема принятия решений в условиях неопределенности.
- •48. Методы теории игр (теория конфликтов), роль информации и равновесие по Нэшу в теории принятия решений.
- •49. Матрицы последствий и рисков
- •50. Принятие решений в условиях полной неопределенности
- •51. Пр в условиях частичной неопределенности
- •52. Ситуации в практике менеджмента, допускающие игровой подход
- •53. Риск в принятии решений как среднее квадратическое отклонение
- •54. Измерение относительного риска: компромисс между риском и прибылью
- •55. Математические методы определения полезности, страха риска и премии за риск
- •56. Байесовский подход
- •57. Принятие решений группой лиц. Теорема Эрроу
- •58. Конфликтные ситуации в принятии решений. Кооперативные игры
- •59. Оптимальность по Парето. Переговорное множество
- •60. Игры с нулевой суммой и их использование в принятии решений
- •61. Моделирование и экспертные оценки при принятии решений
- •62. Методы учета неопределенностей принятия решений: вероятностные модели, теория нечеткости, интервальная математика.
- •63. Эконометрические методы принятия решений. Основные понятия и определения.
- •64. Особенности использования эконометрических методов в принятии решений.
- •65. Основные проблемы использования эконометрических методов в принятии решений.
- •66. Классификация эконометрических методов и моделей в принятия решений.
- •1) Классификация эконометрических моделей по целевому назначению:
- •2) Классификация эконометрических моделей по исследуемым экономическим процессам и содержательной проблематике. При этом выделяются:
- •3) Классификация эконометрических моделей на дескриптивные и нормативные модели:
- •4) Классификация эконометрических моделей по характеру отражения причинно-следственных связей. При этом выделяют:
- •5) Классификация эконометрических моделей по способам отражения фактора времени. При этом выделяют:
- •67. Использование регрессионных моделей в принятии решений. Пример.
- •68. Использование временных рядов в принятии решений. Пример.
- •69. Использование систем одновременных уравнений в принятии решений. Пример.
- •70. Высокие эконометрические технологии и их возможности для принятия решений.
31. Динамическое программирование в принятии решений.
Динамическое программирование в теории управления и теории вычислительных систем — способ решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой, выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.
Ключевая идея в динамическом программировании достаточно проста. Как правило, чтобы решить поставленную задачу, требуется решить отдельные части задачи (подзадачи), после чего объединить решения подзадач в одно общее решение. Часто многие из этих подзадач одинаковы. Подход динамического программирования состоит в том, чтобы решить каждую подзадачу только один раз, сократив тем самым количество вычислений. Это особенно полезно в случаях, когда число повторяющихся подзадач велико.
Метод динамического программирования сверху — это простое запоминание результатов решения тех подзадач, которые могут повторно встретиться в дальнейшем. Динамическое программирование снизу включает в себя переформулирование сложной задачи в виде рекурсивной последовательности более простых подзадач.
Оптимальная подструктура в динамическом программировании означает, что оптимальное решение подзадач меньшего размера может быть использовано для решения исходной задачи.
Подзадачи решаются делением их на подзадачи ещё меньшего размера и т. д., пока не приходят к тривиальному случаю задачи, решаемой за константное время (ответ можно сказать сразу).
Перекрывающиеся подзадачи в динамическом программировании означают подзадачи, которые используются для решения некоторого количества задач (не одной) большего размера (то есть мы несколько раз проделываем одно и то же).
Подводя итоги вышесказанного можно сказать, что динамическое программирование пользуется следующими свойствами задачи:
перекрывающиеся подзадачи;
оптимальная подструктура;
возможность запоминания решения часто встречающихся подзадач.
Динамическое программирование обычно придерживается двух подходов к решению задач:
нисходящее динамическое программирование: задача разбивается на подзадачи меньшего размера, они решаются и затем комбинируются для решения исходной задачи. Используется запоминание для решений часто встречающихся подзадач.
восходящее динамическое программирование: все подзадачи, которые впоследствии понадобятся для решения исходной задачи просчитываются заранее и затем используются для построения решения исходной задачи.
32. Нелинейное программирование в принятии решений.
Нелинейное программирование - раздел математического программирования, изучающий методы решения экстремальных задач с нелинейной целевой функцией и (или) областью допустимых решений, определенной нелинейными ограничениями.
Общая задача нелинейного программирования (ОЗНП) определяется как задача нахождения максимума (или минимума) целевой функции f (x1, х2 ..., x n ) на множестве D, определяемом системой ограничений
(2,1)
где хотя бы одна из функций f или gi является нелинейной.
По аналогии с линейным программированием ЗНП однозначно определяется парой (D, f) и кратко может быть записана в следующем виде
(2,2)
Особенности нелинейного программирования
1)Задачи НЛП значительно ближе к реальным ситуация, чем линейные;
2)Задачи НЛП могут быть с ограничениями и без них;
3)Множество допустимых планов D может иметь очень сложную структуру (например, быть невыпуклым или несвязным);
4)Глобальный максимум (минимум) может достигаться как внутри множества D, так и на его границах;
5)Целевая функция f может быть недифференцируемой, что затрудняет применение классических методов математического анализа;
6)Задачи НЛП настолько разнообразны, что для них не существует общего метода решения.
Источники нелинейности относятся в основном к одной из двух категорий:
1) Реально существующие и эмпирически наблюдаемые нелинейные соотношения.
2) Установленные (постулируемые) руководством правила поведения или задаваемые зависимости.
Задача нелинейного программирования встречается в естественных науках, технике, экономике, математике, в сфере деловых отношений и в науке управления государством.
Метод "затраты – эффективность" также укладывается в схему нелинейного программирования.
Данный метод был разработан для использования при принятии решений в управлении государством.
Классификация методов нелинейного программирования
По количеству локальных критериев в целевой функции:
1)однокритериальные
2)многокритериальные
По длине вектора :
1)однопараметрические или одномерные (n=1),
2)многопараметрические или многомерные (n>1).
По наличию ограничений:
1) без ограничений (безусловная оптимизация),
2)с ограничениями (условная оптимизация).
По типу информации, используемой в алгоритме поиска экстремума: методы прямого поиска, т.е. методы, в которых при поиске экстремума целевой функции используются только ее значения;
градиентные методы первого порядка, в которых при поиске экстремума функции используются значения ее первых производных;
градиентные методы второго порядка, в которых при поиске экстремума функции наряду с первыми производными используются и вторые производные.
градиентные методы второго порядка, в которых при поиске экстремума функции наряду с первыми производными используются и вторые производные.