
- •Понятие множества.
- •Операции над множествами.
- •Унарные операции
- •Свойство числовых множеств и последовательностей.
- •Свойства
- •Евклидово пространство.
- •Понятие окрестности точки.
- •Функциональная зависимость.
- •Графики и свойства основных элементарных функций.
- •Предел числовой последовательности.
- •Предел функции.
- •Основные теоремы о пределах.
- •Первый и второй замечательные пределы. (это что за хрень?))))
- •Раскрытие неопределённостей, правило Лопиталя.
- •Непрерывность функции в точке и на интервале.
- •Свойство непрерывных функций.
- •Точки разрыва первого и второго рода.
- •Нахождение асимптоты функции.
- •Порядок нахождения асимптот
- •Наклонная асимптота — выделение целой части
- •Производная и дифференциал.
- •Основные теоремы о дифференцируемых функциях.
- •Выпуклость функции.
- •Производная сложной функции.
- •Функции нескольких переменных и их неопределённость.
- •Производные функции нескольких переменных.
- •Дифференциалы функции нескольких переменных.
- •Поиск экстремума функции одной переменной.
- •Поиск экстремума функции двух переменных.
Понятие множества.
Множество -- одно из ключевых понятий математики, в частности, теории множестви логики. Понятие множества обычно принимается за одно из исходных (аксиоматических) понятий, то есть не сводимое к другим понятиям, а значит и не имеющее определения. Однако, можно дать описание множества, например в формулировке Георга Кантора:
Под «множеством» мы понимаем соединение в некое целое Mножество определённых хорошо различимых предметов m нашего созерцания или нашего мышления (которые будут называться «элементами» множества M).
Другая формулировка принадлежит Бертрану Расселлу: «Множество суть совокупность различных элементов, мыслимая как единое целое». Также, возможно косвенное определение через аксиомы теории множеств. В математической логике и дискретной математике часто употребляемый синоним множества -- алфавит. Множество может быть замкнутым и незамкнутым, полным и пустым, упорядоченным и неупорядоченным, счётным и несчётным, конечным и бесконечным. Более того, как в наивной, так и в формальной теориях множеств любой объект обычно считается множеством.
Элемент множества - Объекты, из которых состоит множество, называют элементами множества или точками множества. Множества чаще всего обозначают большими буквами латинского алфавита, его элементы -- маленькими. Если а -- элемент множества А, то записываются А (а принадлежит А). Если а не является элементом множества А, то записывают а А (а не принадлежит А).Специальные множества
а) Пустое множество -- множество, не содержащее ни одного элемента.
б) Универсальное множество (универсум) -- множество, содержащее все мыслимые объекты.
в)Упорядоченное множество -- множество, на котором задано отношение порядка.
Операции над множествами.
Множество A содержится во множестве B (множество B включает множество A), если каждый элемент A есть элемент B:
В этом
случае A называется подмножеством B, B — надмножеством A.
Если
и
,
то A называется собственным
подмножеством B.
Заметим, что
.
По определению
.
Два множества называются равными, если они являются подмножествами друг друга:
Иногда для того, чтобы подчеркнуть, что множества могут быть равны, используется запись:
Бинарные Операции
пересечение:
объединение:
Если множества A и B не
пересекаются:
,
то их объединение обозначают также:
.
разность (дополнение):
симметрическая разность:
Декартово или прямое произведение:
Для лучшего понимания смысла этих операций используются диаграммы Эйлера — Венна, на которых представлены результаты операций над геометрическими фигурами как множествами точек.
Унарные операции
Абсолютное дополнение:
Операция дополнения подразумевает некоторый универсум (универсальное множество U, которое содержит A):
Относительным же дополнением называется А\В (см.выше):
Мощность множества:
| A |
Результатом является кардинальное число (для конечных множеств — натуральное).
Множество всех подмножеств (булеан):
Обозначение
происходит из того, что
в
случае конечных множеств.
Для лучшего понимания смысла этих операций используются диаграммы Эйлера -- Венна, на которых представлены результаты операций над геометрическими фигурами как множествами точек.