
- •Тема 1.Элементы комбинаторики
- •1.1. Размещения
- •1.2. Понятие факториала
- •1.3. Размещения с повторениями
- •1.4. Сочетания
- •Сочетания с повторениями
- •1.6. Перестановки
- •1.7. Перестановки с повторениями
- •1.8. Правила комбинаторики
- •Тема 2.Элементы теории вероятностей
- •2.1. Определение вероятности и свойства, вытекающие из её определения. Классификация событий. Диаграммы Венна
- •Полную группу можно определить так: если
- •2.2. Правила сложения и умножения вероятностей. Зависимые и независимые события
- •Тема 3. Формулы полной вероятности и байеса
- •Необходимо определить вероятность события а и переоценить вероятности событий Hi с учетом полной информации о событии а.
- •Тема 4. Дискретные случайные величины.
- •4.1. Определение дискретной случайной величины.
- •4.2.Числовые характеристики.
- •4.3. Математические операции над случайными величинами.
- •4.4. Распределения Бернулли и Пуассона.
- •4.5. Гипергеометрическое распределение.
- •5. Непрерывные случайные величины.
- •5.1. Функция распределения и плотность распределения непрерывной случайной величины.
- •5.2. Нормальное распределение
- •6. Вариационные ряды и их характеристики
- •6.1.Понятие вариационного ряда. Виды вариационных рядов.
- •6.2. Числовые характеристики вариационного ряда
- •7. Выборочный метод и статистическое оценивание
- •7.1. Основные понятия и определения выборочного метода
- •7.2. Статистическое оценивание
- •7.3. Ошибки выборки
- •Формулы расчёта ошибки выборки для собственно-случайного отбора
- •7.4. Определение численности (объема) выборки
- •Формулы расчёта необходимой численности выборки для собственно-случайного отбора
- •7.5. Интервальное оценивание
- •Тема 8. Проверка статистических гипотез
- •Статистическая проверка гипотез
4.4. Распределения Бернулли и Пуассона.
Рассмотрим последовательность n идентичных повторных испытаний, удовлетворяющих следующим условиям:
1. Каждое испытание имеет два исхода, называемые успех и неуспех.
Эти два исхода - взаимно несовместные и противоположные события.
Вероятность успеха, обозначаемая p, остается постоянной от испытания к испытанию. Вероятность неуспеха обозначается q.
Все n испытаний - независимы . Это значит, что вероятность наступления события в любом из n повторных испытаний не зависит от результатов других испытаний.
Вероятность
того, что в n независимых повторных
испытаниях, в каждом из которых вероятность
появления события равна
,
событие наступит ровно m раз ( в любой
последовательности), равна
(4.10)
где q=1-р.
Выражение (4.10) называется формулой Бернулли.
Вероятности того, что событие наступит:
а) менее m раз,
б) более m раз,
в) не менее m раз,
г) не более m раз - находятся соответственно по формулам:
Биномиальным называют закон распределения дискретной случайной величины Х - числа появлений события в n независимых испытаниях, в каждом из которых вероятность наступления события равна р; вероятности возможных значений Х = 0,1,2,..., m,...,n вычисляются по формуле Бернулли (таблица 4.3).
Таблица 4.3
Число успехов Х=m |
0 |
1 |
2 |
... |
m |
... |
n |
Вероятность
Р |
|
|
|
... |
|
... |
|
Так
как правая часть формулы (4.10) представляет
общий член биноминального разложения
, то этот закон распределения называют
биномиальным.
Для случайной величины Х, распределенной
по биноминальному закону, имеем:
M(X)=nр (4.11)
D(X)=nрq (4.12)
Если число испытаний велико, а вероятность появления события р в каждом испытании очень мала, то вместо формулы (4.10) пользуются приближенной формулой:
(4.13)
где
m - число появлений события в n независимых
испытаниях,
(
среднее число появлений события в n
испытаниях).
Выражение (4.13) называется формулой Пуассона. Придавая m целые неотрицательные значения m=0,1,2,...,n, можно записать ряд распределения вероятностей, вычисленных по формуле (4.13), который называется законом распределения Пуассона (таблица 4.4):
Таблица 4.4
M |
0 |
1 |
2 |
... |
m |
... |
n |
Pn;m |
|
|
|
... |
|
... |
|
Распределение Пуассона часто используется, когда мы имеем дело с числом событий, появляющихся в промежутке времени или пространства. Например, число машин, прибывших на автомойку в течении часа, число дефектов на новом отрезке шоссе длиной в 10 километров, число мест утечки воды на 100 километров водопровода, число остановок станков в неделю, число дорожных происшествий.
Если распределение Пуассона применяется вместо биномиального распределения, то n должно иметь порядок не менее нескольких десятков, лучше нескольких сотен, а nр< 10.
Математическое
ожидание к дисперсии случайной величины,
распределенной по закону Пуассона,
совпадают и равны параметру
,
которая определяет этот закон, т.е.
M(X)=D(X)=np= . (4.14)