
- •Основы радиоэлектроники и связи
- •1. Электромагнитные колебания
- •1.2. Диапазоны радиоволн
- •1.3. Структурная схема системы радиосвязи
- •1.4. Гармонические колебания и их представления
- •1.5. Преобразование Фурье.
- •1.6. Спектры периодических колебаний.
- •1.7. Спектры непериодических колебаний
- •1.8. Случайные сигналы.
- •2. Модуляция колебаний
- •2.1. Понятие о модуляции. Виды.
- •2.2. Амплитудная модуляция
- •2.3. Векторная диаграмма ам-колебания
- •2.4. Угловая модуляция
- •2.5. Импульсная модуляция
- •3. Генерирование гармонических колебаний
- •3.1. Классификация
- •3.2. Стабилизация частоты в автогенераторах.
- •3.3. Генераторы сверхвысоких частот
- •3.4. Оптические квантовые генераторы
- •3.5. Генераторы шумовых сигналов
- •4. Преобразование частоты сигналов
- •5. Детектирование
- •5.1. Амплитудные детекторы
- •5.2. Линейный диодный детектор.
- •6. Радиоприемные устройства
- •6.1. Общие сведения
- •6.2. Приемник прямого усиления
- •6.3. Супергетеродинный приемник
- •6.4. Автоматические устройства управления и регулировок приемника
- •6.5. Автоматическая регулировка усиления.
- •6.6. Автоматическая подстройка частоты.
- •6.7. Цифровая система ару.
- •6.8. Двойное преобразование частоты
- •6.9. Тенденции развития радиоприемных устройств.
- •7. Радиопередающие устройства.
- •7.1. Общие сведения
- •7.2. Передатчик с амплитудной модуляцией
- •7.3. Передатчик с частотной модуляцией.
- •7.4. Тенденции развития радиопередающих устройств.
- •8. Системы связи
- •8.1. Виды систем связи
- •8.2. Основные характеристики и параметры систем связи
- •8.3. Классификация радиотехнических систем
- •8.4. Телевизионные (вещательные) системы
- •8.6. Системы цветного телевидения
- •8.7. Системы телевидения высокой четкости.
- •8.8. Системы цифрового телевидения.
- •8.10. Радиотехнические системы обнаружения и измерения.
- •8.11. Радиолокационные системы.
- •8.12. Радионавигационные системы.
- •8.13. Системы радиотелеуправления.
- •8.14. Системы подвижной (мобильной) связи.
- •8.15. Системы сотовой подвижной связи.
- •8.16. Профессиональные системы подвижной связи.
- •8.17. Системы персонального радиовызова.
- •8.18. Системы подвижной спутниковой связи.
- •8.19. Системы беспроводных телефонов.
- •8.20. Глобальные системы связи будущего.
- •9.2. Цифровое представление сигналов.
- •9.3. Теорема Котельникова.
- •9.4. Дискретизация непрерывного сигнала
- •9.5. Спектр дискретного сигнала
- •9.6. Дискретное преобразование Фурье
- •9.7. Обратное дискретное преобразование Фурье
- •9.8. Быстрое преобразование Фурье
- •9.9. Классификация методов анализа линейных цепей
- •9.10. Дискретная свертка сигналов
- •10. Цифровые фильтры
- •10.1. Принципы цифровой фильтрации
- •10.2. Понятие о цифровых фильтрах
- •10.3. Нерекурсивные цифровые фильтры
- •10.4. Рекурсивные цифровые фильтры
- •10.6. Частотные характеристики цифровых фильтров
- •10.7. Основы синтеза цифровых фильтров
- •10.8. Метод инвариантности импульсных характеристик
- •11.Оптимальная линейная фильтрация сигнала в приемных устройствах
- •11.1 Согласованный линейный фильтр
- •11.2. Импульсная характеристика оптимального фильтра
- •11.3. Согласованный фильтр для одиночного видеоимпульса прямоугольной формы
- •11.4. Согласованный фильтр для пачки одинаковых видеоимпульсов
- •11.5.Согласованный фильтр для прямоугольного радиоимпульса
- •11.6. Понятие о квазиоптимальном фильтре
- •12. Элементы теории помехоустойчивого приема
- •12.1. Информационные параметры систем связи
- •12.2. Оценка количества информации, содержащейся в сообщении
- •12.3. Энтропия источника сообщений
- •12.4. Оценка пропускной способности канала связи с шумами
- •12.5. Кодирование сообщений в системах связи
- •12.6. Принципы помехоустойчивого кодирования
- •13. Основы шумоподобных сигналов
- •13.1 Понятие о корреляционном анализе
- •13.2. Связь между энергетическим спектром и акф сигнала
- •13.3. Шумоподобные сигналы
- •13.4. Сигналы (коды) Баркера.
- •13.5. Функции Уолша
- •14. Вейвлет-анализ в радиотехнике и связи
- •14.1. Понятие о вейвлет-анализе
- •14.2. Непрерывный вейвлет-анализ.
- •14.3. Дискретный (ортогональный) вейвлет-анализ
- •14.4. Сжатие информации на основе вейвлетов
13. Основы шумоподобных сигналов
13.1 Понятие о корреляционном анализе
Корреляционный анализ «пришел» в радиотехнику в конце 40-х годов ХХ века, а фундаментальная теорема Хинчина-Винера свзала его и гармонический анализ в единое целое.
На практике, часто наряду со спектральным исследованием сигналов, оказывается полезным анализ характеристики, дающей представление о скорости изменения во времени, а также длительности сигнала без разложения его на гармонические оставляющие.
Пусть копия сигнала u(t-τ) смещена относительно своего оригинала
u(t) на некоторый интервал времени τ. Для количественной оценки степени отличия (связи) исходного сигнала u(t) и его смещенной во времени копии u(t-τ) используют автокорреляционную (корреляционную) функцию (АКФ).
Для детерминированного сигнала конечной длительности (финитного сигнала) аналитическая запись АКФ представляет собой интеграл вида
(13.1)
Формула (13.1) показывает, что при отсутствии сдвига (τ=0) АКФ имеет положительное значение и достигает максимальной величины, равной энергии сигнала:
(13.2)
Такая энергия [Дж] выделяется на резисторе с сопротивлением 1 Ом, если к его выводам подключить напряжение u(t) [B].
Одним из важнейших свойств АКФ является ее четность: В(τ) = В(-τ),
что легко доказывается.
Для периодического сигнала с периодом Т, энергия которого бесконечно велика, вычисление АКФ невозможно, В этом случае вычисляют АКФ за период
.
(13.3)
ПРИМЕР 13.1. Для прямоугольного видеоимпульса, имеющего амплитуду Е и длительность τИ определить автокорреляционную функцию.
Р
е ш е н и е. Для этого примера вычисления
удобнее провести графически. На рис.
13.1 показано построение АКФ для
прямоугольного импульса. При данных
построениях на рис. 13.1, а...в приведены
соответственно: исходный импульс u(t)
= u, сдвинутая на
интервал τ его копия uτ(t)=
u(t–τ)=
uτ и их
произведение u(t)
u(t–τ)=
u uτ.
Интеграл (13.1), в данном случае наиболее просто и наглядно вычислить путем графических построений. Произведение u(t) u(t–τ) не равно нулю на интервале времени, когда имеется наложение друг на друга любых частей сигнала и его копии и достигает максимума при τ= 0. Найденная АКФ имеет вид равнобедренного треугольника с шириной основания в два раза больше длительности прямоугольного импульса и высотой, определяемой энергией сигнала В(0) = Е2 τ = Э (рис. 13.1, г). В радиоэлектронике часто вводят удобный для анализа сигналов числовой параметр – интервал корреляции, графически равный ширине основания АКФ. Для данного примера интервал корреляции τк = 2 τИ.
Пример 13.2. Определить автокорреляционную функцию гармонического сигнала u(t) = Umcos(ωt + φ) c ненулевой начальной фазой (рис. 13.2, а).
Р е ш е н и е. Используя формулу (13.3) и обозначив Вn(τ) = R(τ), находим
.
Автокорреляционная функция гармонического
сигнала любого вида имеет размерность
мощности и не зависит от начальной фазы
колебания φ0 (рис.13.2).