Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЧАСТИНА II.doc
Скачиваний:
18
Добавлен:
27.11.2019
Размер:
2.28 Mб
Скачать

4.4. Термоперетворювачі опору

Принцип дії термоперетворювачів опору заснований на зміні електричного опору провідникових і напівпровідникових матеріалів при зміні їх температури. У термоперетворювачах опору використовуються матеріали, що володіють великим і стабільним температурним коефіцієнтом опору, лінійною залежністю опору від температури, хорошою відтворністю властивостей.

Прилади для вимірювання температури, в яких як чутливі елементи використовуються термоперетворювачі опору, називаються термометрами опору. У промислових термометрах опори знайшли застосування провідникові термоперетворювачі опору. Провідникові термоперетворювачі виготовляються з чистих металів: платини, міді, нікелю і заліза. Найбільш ширше застосовуються платина і мідь. Для металів залежність опору від температури має нелінійний характер:

де R0 — опір провідника при початковій температурі; Θ — перегрівши провідника відносно початкової температури; α, β, γ — коефіцієнти, залежні від властивостей провідника.

Конкретний вираз для опору термоперетворювача опору залежить від заданого діапазону вимірювання температури. Для платинових термоперетворювачів, працюючих в діапазоні від 0 до 600 ºС, залежність опору від температури визначається виразом

де R0 — опір при 0 ºС.

Для чистої платини α = 3,94 • 10-3 1/ºС, β = - 5,8 • 10-7 1/(°С)2. У діапазоні від 0 до -200 ºС залежність опору платинового термоперетворювача від температури має інший вигляд:

де γ = -4 • 10-21/(°С)3.

Залежність електричного опору мідного термоперетворювача, працюючого в діапазоні від -50 до 180 °З, від температури має лінійний характер і виражається рівнянням

де

Вибір матеріалу для термоперетворювачів опору визначається інертністю металу до вимірюваного середовища в заданому інтервалі температур. Мідні термоперетворювачі можна застосовувати до температури 200 ºС в атмосфері, що має низьку вологість і вільній від газів, що викликають корозію. При вищій температурі мідь окислюється.

Платинові термоперетворювачі використовуються при вимірюванні температури в діапазоні від -200 до 650 °С. Залізо і нікель як матеріал для термоперетворювачів застосовують рідко, у зв'язку з тим, що характеристики цих металів відрізняються нелінійністю і сильною залежністю від домішок. Вітчизняна промисловість випускає платинові і мідні термометри опору, чутливий елемент яких виконується з тонкого дроту — відповідно платинового (діаметром 0,07 мм) або мідного (діаметром 0,1 мм). Щоб виключити появу індуктивності, дріт чутливого елементу намотується біфілярно. Для захисту від дії вимірюваного середовища чутливі елементи поміщають в спеціальну трубку.

На рис. 4.15 показана одна з конструкцій термоперетворювача опору. Платиновий дріт 1 намотаний біфілярно на слюдяний каркас 2, на якому є дрібні зубці. Для ізоляції дріт закривається з обох боків слюдяними пластинами 3. Для покращання умов теплообміну чутливого елементу з середовищем застосовуються пластинки 4 С-образного перерізу з фольги. Пластинки 2, 3 і 4 скріпляються і щільно вставляються всередину кожуха 5. Виведення виконуються з срібної стрічки або дроту і виводяться в клемную коробку 7. За допомогою гайки 6 термометр опору кріпиться до корпусу.

По значенню опору при 0 ºС платинові термометри опору випускаються трьох типів: опором 10, 46 і 100 Ом.

Перший тип використовується при вимірюванні температури від 0 до 650 ºС, останні два — при вимірюванні температури від -200 до 500 °С. Мідні термометри опору випускаються з опором 53 і 100 Ом і використовуються для вимірювання температур від ~50 до 180 ºС.

Тонкоплівкові платинові термометри опору складаються з керамічної підкладки завтовшки 0,6 мм, на яку напилюють шар платини товщиною близько 2 мкм. За допомогою лазерного променя з шару платини випалюється малюнок у вигляді меандра. До одержаного тонкоплівкового провідника приварюють контактні виведення. Для захисту активного платинового провідника від пошкоджень його покривають керамічним ізоляційним шаром завтовшки 10 мкм. Монолітна конструкція тонкоплівкового термоперетворювача значно підвищує його надійність. Тонкоплівкового ПТС використовуються при вимірюванні температури від 0 до 400 ºС.

Через теплову інерцію температура чутливого елементу відрізняється від температури контрольованого середовища, яке міняється в часі. Теплова інерція залежить від умов теплообміну між середовищем і чутливим елементом. Термометр опору можна вважати аперіодичною ланкою першого порядку, постійна часу якого залежить від питомої теплоємності термометра, його маси і коефіцієнта теплопередачі.

Постійна часу термоперетворювача опору залежить від умов охолоджування і буде різною для одного і того ж перетворювача, що знаходиться в повітрі і в рідині. Залежно від конструкції постійна часу термометрів опору коливається від 10 с до 7 хвилин. Протікання струму через термоперетворювач опору може привести до зміни його температури. Тому при вимірюваннях струм повинен мати невелике значення.

Перспективними є перетворювачі опору, виготовлені з напівпровідникових матеріалів з великим негативним температурним коефіцієнтом або, як їх ще називають, термістори.

Зміна опору Rт напівпровідника при зміні температури характеризується залежністю

де А — постійна, залежна від фізичних властивостей напівпровідника, розмірів і форми термістора; В — постійна, залежна від фізичних властивостей напівпровідника; Т — температура термістора, К. Температурний коефіцієнт α напівпровідникового термістора негативний. Він досягає значень від -2,5 до 4% К-1, що в 6 — 10 разів більше температурного коефіцієнта металів, і сильно залежить від температури:

В иражаючи опір термістора як функцію перегріву відносно початкової температури, можна виразити його і так:

де Θ — перегрів відносно початкової температури;

Rт — опір термістора при початковій температурі; Rт (Θ) — опір термістора зі зміненою температурою.

На рис. 4.16 показаний Устрій термісторів серії ММТ і КМТ. Термістори типів ММТ-1, КМТ-1 (рис. 4.16, а) є напівпровідниковий стержень 1, покритий емалевою фарбою, з контактними ковпачками 2 і виведеннями 3. Ці типи термісторов можуть бути використані лише в сухих приміщеннях. Термістори типів ММТ-4 і КМТ-4 (рис. 4.16, б) вмонтовані в металевий корпус 6 і герметизується. Вони можуть бути застосовані в умовах будь-якої вологості і будь-якого середовища, агресивного, що не є, по відношенню до корпусу термоопору. Герметизація здійснюється склом і оловом 9. Стержень 5 у термісторі типа ММТ-4 огорнутий металевою фольгою 4. Струмовід 7 виконаний з нікелевого дроту. Ці термістори випускаються на номінальні значення опору від 1 до 200 кОм (при 20 ºС) і можуть бути використані для роботи в діапазоні температур від -100 до 129 ºС.

Недоліками термісторів є нелінійність залежності їх опорів від температури і значне відхилення від зразка до зразка як номінального значення опору, нормованого звично при 20 ºС (більш ±30%), так і характеру залежності опору від температур (відхилення значень температурного коефіцієнта досягає ±5% і більш).

Лінеаризацію залежності опору від температури вдається одержати в коректованих термоелементах, тобто в пристроях, що є комбінацією термісторів з іншими резисторами.

Ширше застосування на судах знайшли позистори. Однією з основних відмінностей від термісторів є знак і значення температурного опору. На відміну від термісторів температурна залежність опору позистора має складний характер.

На рис. 4.17 показана температурна залежність позистора. Як видно з рисунка, температурна залежність позистора неоднозначна.

Із зростанням температури від -180 ºС опір позистора зменшується, досягаючи мінімального значення при 60—80 °С. Подальше підвищення температури викликає зростання опору, що досягає максимального значення при 190 – 200 ºС.

Із зростанням температури понад 190—200 ºС опір зменшується.

На характеристиці можна виділити три ділянки. На першій і третій ділянках позистор поводиться як термістор. На другій ділянці позистор має позитивний температурний коефіцієнт опору (ТКО). Звичайно використовується друга ділянка характеристики.

На судах позистори використовують для захисту асинхронних електродвигунів від перевантаження.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]