
- •Газообразное топливо Промышленное значение и общая характеристика горючих газов Преимущества газообразного топлива:
- •Классификация и характеристика горючих газов Состав природных газов основных месторождений
- •Добыча и обработка природных газов
- •Транспортировка газа на большие расстояния
- •Искусственные газы (горючие)
- •Газы безостановочной газификации
- •С Рисунок № 4. Схема переработки попутных газов. Хема переработки попутных газов
- •Газораспределительные станции ‑ грс. Газорегуляторные пункты и установки ‑ грп
- •Схемы газоснабжения промышленных предприятий
- •Схемы газоснабжения промышленных предприятий без внутренних источников газа
- •Одноступенчатая схема газоснабжения предприятия с сетью низкого давления
- •Двухступенчатая схема газоснабжения
- •Схемы газоснабжения промышленных предприятий с внутренним источником газа
- •О бъем потребления
- •С Рисунок №9.Схема снабжения объектов природным газом. Хема снабжения газопотребляемых объектов природным газом
- •Газовые балансы предприятий
- •Классификация материалов газопроводов и арматуры
- •Потребление и нормы расхода газа
- •Годовой график потребления газа промышленным узлом, включающим несколько предприятий и населенных пунктов
- •Управление газовым хозяйством предприятия
- •Принципы расчета гп
- •Твердое топливо как энерГоноситель
- •Основные характеристики некоторых видов твердого топлива
- •Жидкое топливо. Основной вид жидкого топлива, применяемый на промышленном предприятии ‑ мазут.
- •Кислород и азот как энергоноситель.
- •И деальные процессы ожжижения газов.
- •Технические процессы ожжижения газов.
- •Устройства разделения воздуха
- •Машины и аппараты кислородного производства
- •Техника безопасности в кислородном производстве
- •Основные правила тб при работе с кислородом
- •Водо-охладительные объекты. Брызгальные бассейны.
- •Общий вид номограммы.
- •Градирни.
- •Пруды – охладители.
- •Сравнение и выбор типа охлаждающих устройств.
- •Сжатый воздух как энергоноситель
- •Холод как энергоноситель.
- •Тепловые насосы
- •Классификация
Машины и аппараты кислородного производства
Перед разделением воздух следует очистить от механических примесей, влажности, двуокиси углерода. Очистка от механических примесей осуществляется в фильтрах, устройство которых зависит от количества обрабатываемого воздуха (< 2000 м3/ч). Можно использовать кассету из колес Рашинга, смоченных в масле. Воздух продувается через кассету с W=0,3-0,5 м/с до достижения критического давления (0,3-0,4 кПа). При большем давлении кольца промываются, смачиваются в масле и набивается кассета.
При больших расходах воздуха используются сухие фильтры с пористыми насадками или электрическими фильтрами.
Для очистки воздуха от влаги применяют очистку выпора жеванием или адсорбционную осушку. При осушке путем вымораживания воздух проходит две рекуперации. Таким образом, в первом воздух охлаждается до температуры –5 оС, а во втором (вымораживании) до температуры –40 оС. Для непрерывной работы сушки 2 вымораживателя, один из которых во время работы освобождается от влаги.
При адсорбционной осушке используются синтетические цеолиты (алюмосиликаты Са, Nа) или активированный глинозем (АL2О3 *H2О > 92%).
Очистка от СО2 необходима, т.к. при температуре кислородного производства СО2 переходит в твердое состояние (t затвердения = -79 оС). Для очистки может использоваться химический метод, основанный на поглощении СО2 едким натром:
2NаОН + СО2 = Nа2СО31 + Н2О
Чаще используется адсорбционный способ очистки, когда в качестве адсорбителя используется активированный уголь или синтетические цеолиты.
Для охлаждения воздуха и нагревания продуктов его разделения чаще всего используют трубчатые теплообменники, в которых используются такие материалы как медь, алюминий, латунь.
Основные требования к теплообменникам:
-сохранение морозоустойчивости и ударной вязкости до очень низких температур (195оС);
-малые габаритные размеры и сопротивление 20-30 кПа.
В качестве материалов насадок применяют ленты или твердые частицы с размерами 5-10мм.
Во время движения сжатого воздуха влага и СО2 откладываются на поверхности насадки, а во время обратного движения продуктов разделения удаляются.
Воздушные компрессоры кислородного производства для достижения высокого давления (16-20 МПа) работают по схеме многоступенчатого сжатия с промежуточным охлаждением воздуха перед подачей его в каждую последующую ступень.
На установках небольшой производительности среднего и высокого давления используются поршневые компрессоры и детандеры, а в установках высокой производительности при Р<2 МПа турбомашины. При этом температура ввода воздуха в турбодетандерах: -110 … -60 оС, а поршневые аппараты: -50…+20 оС.
Насосы кислородного производства используются для забора жидкого кислорода из цистерн и подачи его в газификаторы, а также для отбора жидкого кислорода из ректификационной колонны.
Особенности насосов: высокое давление: Р=16-20 МПа , малая производительность: < 1м3/ч, тип насосов- плунжерный.
В насосах не должны применяться смазочные материалы на органической основе, что может привести к загоранию или к взрыву.
С целью уплотнения применяются графитовые сальники или лабиринтные уплотнения. Для смазки кислородных компрессоров в газообразующий кислород на всасе подают воду или специальную эмульсию, либо применяют поршневые кольца из антифризных материалов.
На кислородных установках средней и высокой производительности предусмотрена возможность получения ряда инертных газов (аргон, ксенон).
При маркировке установок буква указывает на основной целевой продукт:
К – технический О2;
Кт – технологический О2;
Кж – основной продукт – жидкий О2;
Ка – жидкий N2;
А – чистый N2;
Ар – аргон.
Цифры маркировки обычно обозначают производительность: т/ч, м3/ч.
В промышленности получили распространение установки: К-1-4, Кт-300М, КтК-35-2
Основные характеристики КтК – 35- 2
Параметры |
Тип блока разделения |
|
БР-2 |
БР-2м |
|
Подача воздуха, тм3/ч |
170 |
180 |
Производительность, тм3/ч |
К-11,6 |
К-11 |
Кт-23,6 |
Кт-24 |
|
А-11 |
А-23,7 |
|
Концентрация основных веществ в готовом продукте, % |
К-99 |
К-99,6 |
Кт-95 |
Кт-95,3 |
|
А-99 |
А-99 |
|
Давление воздуха после турбокомпрессора, МПа |
0,62 |
0,62 |
Расход энергии, МДж/м3 |
1,44 |
1,44 |