
- •Задача о математическом и физическом маятнике.
- •Собственные электромагнитные колебания в идеальном колебательном контуре.
- •Энергия гармонического осциллятора (механические колебания).
- •Энергия гармонического осциллятора (электромагнитные кллебания).
- •Альфа и бета распады. Радиоактивность.
- •Кинетический закон радиоактивного распада.
- •Основные свойства ядерных сил. Радиоактивность.
- •Физика ядра.Дефект массы. Энергия связи атомного ядра.
- •Примесная проводимость полупроводников. Проводники р-типа и n-типа.
- •Полупроводники. Собственная проводимость полупроводников.
- •Потенциалы возбуждения, ионизации
- •Опыт Штерла и Герлаха. Спин электрона. Спиновый магнитный момент электрона. Квантование спина.
- •Пространственное квантование орбитально-механического и орбитально-магнитного моментов. Магнитное квантовое число.
- •Квантование орбитального механического и орбитального магнитного моментов электрона. Орбитальное квантовое число.
- •Спектр атома водорода. Сериальная формула.
- •Квантово-механическая теория атома водорода. Квантование энергии. Главное квантовое число.
- •Уравнение Шредингера для стационарного состояния. Задача о свободном электроне.
- •Волновая функция. Её свойства и условие нормировки волновой функции.
- •Соотношение неопределенностей Гейзенберга
- •Модели строения атома. Идея де Бройля. Корпускулярно-волновой дуализм материи.
- •Внешний фотоэффект. Законы фотоэффектов. Квантовая теория внешнего фотоэффекта.
- •Тепловое излучение. Характеристики лучеиспускательной, поглощательной и отражательной способности тел. Закон Кирхгофа.
- •Квантовая оптика. Фотон и его характеристики.
- •Поляризация света. Закон Малюса. Закон Брюстера. Двойное лучепреломление. Явление Дихроизма. Поляризатор и анализатор.
- •1) Линейные (плоскополяризованный свет) :поляризационные призмы , поляроиды , стопы.2) циркулярные (эллиптически поляризованный свет)
- •Дифракция света. Дифракционная решетка. Дифракция рентгеновских лучей. Формула Вульфа-Брэгга.
- •Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция от одной щели.
- •Интерференция.
- •Интеференция света. Общее условие наблюдения интерференционных максимумов и минимумов. Опыт Югга.
- •Взаимодействие электромагнитных волн с веществом (поглощение, отражение, преломление)
- •Шкала электромагнитных волн. Излучение электромагнитных волн.
- •Вектор Пойнтинга.
- •Интерференция волн. Стоячие волны.
- •Волны. Продольные и поперечные волны. Уравнение плоской гармонической волны и его анализ. Скорость распространения волн. Волновое уравнение.
- •Вынужденные механические колебания. Дифференциальное уравнение и его решение. Резонанс.
- •Затухающие электромагнитные колебания. Дифференциальное уравнение. Характеристики затухания.
- •Затухающие механического колебания. Дифференциальное уравнение. Характеристики затухания.
- •Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- •Сложение гармонических колебаний со слегка отличающимися частотами.
- •Сложение гармонических колебаний одного направления
Полупроводники. Собственная проводимость полупроводников.
Полупроводники́ — материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов излучения. Полупроводники характеризуются как свойствами проводников, так и диэлектриков.Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры. В зависимости от того, отдаёт ли атом примеси электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.Проводимость полупроводников сильно зависит от температуры. Вблизи абсолютного нуля температуры полупроводники имеют свойства диэлектриков.
Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т. д. Это обуславливается ковалентными связями атомов. Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой.Обычно подвижность дырок в полупроводнике ниже подвижности электронов.
С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5—2 эВ. Электронно-дырочный механизм проводимости проявляется только у чистых (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.
Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».
Проводимость
связана с подвижностью частиц следующим
соотношением:
,
где ρ удельное сопротивление, μ_n —
подвижность электронов, μ_p — подвижность
дырок, N_n,_p — их концентрация, q —
элементарный электрический заряд
(1,602×10−19 Кл).
Для собственного
полупроводника концентрации носителей
совпадают и формула принимает вид:
Потенциалы возбуждения, ионизации
Возбуждение- квантовый переход атома или молекулы с более низкого (напр., основного) уровня энергии на более высокий при поглощении ими фотонов (фотовозбуждение) или при столкновениях с электронами и др. частицами (возбуждение ударом). Атомы вещества могут находиться в состояниях с различными значениями энергии, в основном когда энергия атома минимальна ( Wo ), и в одном из возбужденных состояний. Энергия возбужденного состояния может принимать только дискретные значения Wn > Wo , определяемые структурой данного атома. Разность энергий двух состояний ∆Wmn = Wm − Wn называют энергией перехода из состояния (или энергетического уровня) номер m в состояние (на уровень) номер n. Величину Un = (Wn − Wo) / e принято называть потенциалом возбуждения n-го уровня. При переходе на более высокий (с большей энергией) уровень атомы поглощают энергию, а на более низкий - отдают ее. Переходы атома с уровня на уровень могут происходить как в результате поглощения или исчезновения фотона (радиационные переходы), так и в результате столкновений с другими частицами (безизлучательные, или релаксационные переходы). Безизлучательные переходы в возбужденное состояние могут происходить, в частности, под действием электронного удара - столкновения свободных электронов неподвижными атомами. При этом оказывается, что поглощение проходящих через вещество электронов существенно зависит от их энергии. Величина потенциала ионизации и возбуждения зависит от природы атома. Количество энергии, которое необходимо для выделения электрона из металла или жидкого тела, называется работой выхода электрона и выражается в электрон-вольтах.
Иониза́ция — эндотермический процесс образования ионов из нейтральных атомов или молекул.Положительно заряженный ион образуется, если электрон в атоме или молекуле получает достаточную энергию для преодоления потенциального барьера, равную ионизационному потенциалу. Отрицательно заряженный ион, наоборот, образуется при захвате дополнительного электрона атомом с высвобождением энергии.Принято различать ионизацию двух типов — последовательную (классическую) и квантовую, не подчиняющуюся некоторым законам классической физики.
Квантовая ионизация. Генрих Герц установил, что под действием света из тела могут вырываться электроны — было открыто явление фотоэффекта.Фотоны, которые способные поглощаться или излучаться как целое одним электроном, придают ему достаточную кинетическую энергию для преодоления силы тяготения электрона к ядру — возникает квантовая ионизация.
Методы, использующиеся для ионизации проводящих материалов:
Искровая ионизация: за счёт разницы потенциалов между кусочком исследуемого материала и другим электродом возникает искра, вырывающая с поверхности мишени ионы.
Ионизация в тлеющем разряде происходит в разряжённой атмосфере инертного газа (например, в аргоне) между электродом и проводящим кусочком образца.
Ударная ионизация. Если какая-либо частица с массой m (электрон, ион или нейтральная молекула), летящая со скоростью V, столкнется с нейтральным атомом или молекулой, то кинетическая энергия летящей частицы может быть затрачена на совершение акта ионизации, если эта кинетическая энергия не меньше энергии ионизации.