
- •Задача о математическом и физическом маятнике.
- •Собственные электромагнитные колебания в идеальном колебательном контуре.
- •Энергия гармонического осциллятора (механические колебания).
- •Энергия гармонического осциллятора (электромагнитные кллебания).
- •Альфа и бета распады. Радиоактивность.
- •Кинетический закон радиоактивного распада.
- •Основные свойства ядерных сил. Радиоактивность.
- •Физика ядра.Дефект массы. Энергия связи атомного ядра.
- •Примесная проводимость полупроводников. Проводники р-типа и n-типа.
- •Полупроводники. Собственная проводимость полупроводников.
- •Потенциалы возбуждения, ионизации
- •Опыт Штерла и Герлаха. Спин электрона. Спиновый магнитный момент электрона. Квантование спина.
- •Пространственное квантование орбитально-механического и орбитально-магнитного моментов. Магнитное квантовое число.
- •Квантование орбитального механического и орбитального магнитного моментов электрона. Орбитальное квантовое число.
- •Спектр атома водорода. Сериальная формула.
- •Квантово-механическая теория атома водорода. Квантование энергии. Главное квантовое число.
- •Уравнение Шредингера для стационарного состояния. Задача о свободном электроне.
- •Волновая функция. Её свойства и условие нормировки волновой функции.
- •Соотношение неопределенностей Гейзенберга
- •Модели строения атома. Идея де Бройля. Корпускулярно-волновой дуализм материи.
- •Внешний фотоэффект. Законы фотоэффектов. Квантовая теория внешнего фотоэффекта.
- •Тепловое излучение. Характеристики лучеиспускательной, поглощательной и отражательной способности тел. Закон Кирхгофа.
- •Квантовая оптика. Фотон и его характеристики.
- •Поляризация света. Закон Малюса. Закон Брюстера. Двойное лучепреломление. Явление Дихроизма. Поляризатор и анализатор.
- •1) Линейные (плоскополяризованный свет) :поляризационные призмы , поляроиды , стопы.2) циркулярные (эллиптически поляризованный свет)
- •Дифракция света. Дифракционная решетка. Дифракция рентгеновских лучей. Формула Вульфа-Брэгга.
- •Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция от одной щели.
- •Интерференция.
- •Интеференция света. Общее условие наблюдения интерференционных максимумов и минимумов. Опыт Югга.
- •Взаимодействие электромагнитных волн с веществом (поглощение, отражение, преломление)
- •Шкала электромагнитных волн. Излучение электромагнитных волн.
- •Вектор Пойнтинга.
- •Интерференция волн. Стоячие волны.
- •Волны. Продольные и поперечные волны. Уравнение плоской гармонической волны и его анализ. Скорость распространения волн. Волновое уравнение.
- •Вынужденные механические колебания. Дифференциальное уравнение и его решение. Резонанс.
- •Затухающие электромагнитные колебания. Дифференциальное уравнение. Характеристики затухания.
- •Затухающие механического колебания. Дифференциальное уравнение. Характеристики затухания.
- •Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- •Сложение гармонических колебаний со слегка отличающимися частотами.
- •Сложение гармонических колебаний одного направления
Сложение гармонических колебаний одного направления
Пусть совершаются два гармонических колебания одного направления и одинаковой частоты
Уравнение
результирующего колебания будет иметь
вид
Или окончательно,
используя теорему косинусов суммы,
имеем:
Тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (φ2-φ1) сгладываемых колебаний.
В зависимости от разности фаз (φ2-φ1):
1) (φ2-φ1) = ±2mπ (m=0, 1, 2, …), тогда A= А1+А2, т. е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний;
2) (φ2-φ1) = ±(2m+1)π (m=0, 1, 2, …), тогда A= |А1-А2|, т. е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний
Пусть два колебания мало отличаются по частоте. Тогда амплитуды складываемых колебаний равны А, а частоты равны ω и ω+Δω, причем Δω намного меньше ω. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю:
Решим систему,
получим
Результирующее колебание можно рассматривать как гармоническое с частотой ω, амплитуда А, которого изменяется по следующему периодическому закону:
Частота изменения А в два раза больше частоты изменения косинуса. Частота биений равна разности частот складываемых колебаний: ωб = Δω
Период биений:
Определение частоты тона (звука определенной высоты биений эталонным и измеряемым колебаниями — наиболее широко применяемый на метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д.
закон
радиоактивного распада
энергия
связи
постулаты
Бора
фотоэффект
индукт. и емкость
в цепи перем. тока
виток в однородном
магн. Поле
собст. затухающие
колебания контура
электромагн.
гарм. Колебания
Колебания и волны , механич. гармонич. Колебания
Магн. поток
Индуктивность
ЭДС самоиндукции