
- •Задача о математическом и физическом маятнике.
- •Собственные электромагнитные колебания в идеальном колебательном контуре.
- •Энергия гармонического осциллятора (механические колебания).
- •Энергия гармонического осциллятора (электромагнитные кллебания).
- •Альфа и бета распады. Радиоактивность.
- •Кинетический закон радиоактивного распада.
- •Основные свойства ядерных сил. Радиоактивность.
- •Физика ядра.Дефект массы. Энергия связи атомного ядра.
- •Примесная проводимость полупроводников. Проводники р-типа и n-типа.
- •Полупроводники. Собственная проводимость полупроводников.
- •Потенциалы возбуждения, ионизации
- •Опыт Штерла и Герлаха. Спин электрона. Спиновый магнитный момент электрона. Квантование спина.
- •Пространственное квантование орбитально-механического и орбитально-магнитного моментов. Магнитное квантовое число.
- •Квантование орбитального механического и орбитального магнитного моментов электрона. Орбитальное квантовое число.
- •Спектр атома водорода. Сериальная формула.
- •Квантово-механическая теория атома водорода. Квантование энергии. Главное квантовое число.
- •Уравнение Шредингера для стационарного состояния. Задача о свободном электроне.
- •Волновая функция. Её свойства и условие нормировки волновой функции.
- •Соотношение неопределенностей Гейзенберга
- •Модели строения атома. Идея де Бройля. Корпускулярно-волновой дуализм материи.
- •Внешний фотоэффект. Законы фотоэффектов. Квантовая теория внешнего фотоэффекта.
- •Тепловое излучение. Характеристики лучеиспускательной, поглощательной и отражательной способности тел. Закон Кирхгофа.
- •Квантовая оптика. Фотон и его характеристики.
- •Поляризация света. Закон Малюса. Закон Брюстера. Двойное лучепреломление. Явление Дихроизма. Поляризатор и анализатор.
- •1) Линейные (плоскополяризованный свет) :поляризационные призмы , поляроиды , стопы.2) циркулярные (эллиптически поляризованный свет)
- •Дифракция света. Дифракционная решетка. Дифракция рентгеновских лучей. Формула Вульфа-Брэгга.
- •Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция от одной щели.
- •Интерференция.
- •Интеференция света. Общее условие наблюдения интерференционных максимумов и минимумов. Опыт Югга.
- •Взаимодействие электромагнитных волн с веществом (поглощение, отражение, преломление)
- •Шкала электромагнитных волн. Излучение электромагнитных волн.
- •Вектор Пойнтинга.
- •Интерференция волн. Стоячие волны.
- •Волны. Продольные и поперечные волны. Уравнение плоской гармонической волны и его анализ. Скорость распространения волн. Волновое уравнение.
- •Вынужденные механические колебания. Дифференциальное уравнение и его решение. Резонанс.
- •Затухающие электромагнитные колебания. Дифференциальное уравнение. Характеристики затухания.
- •Затухающие механического колебания. Дифференциальное уравнение. Характеристики затухания.
- •Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- •Сложение гармонических колебаний со слегка отличающимися частотами.
- •Сложение гармонических колебаний одного направления
Взаимодействие электромагнитных волн с веществом (поглощение, отражение, преломление)
Волна (волновой процесс) - процесс распространения колебаний в сплошной среде. При распростаранении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояния колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества (10)*
Смотрите, что произошло. Мы только привели определение волны, дающееся в учебнике, но уже можем отметить ошибочность некоторых основ современного представления о распространении электромагнитных волн.
а) фотоны по определению не могут двигаться; б) среда распространения должна быть сплошной.
Оба пункта в Стандартной модели (изучаемой в школе или институте) нарушаются. И фотоны летят со скоростью света, и сплошной среды не просматривается.
2. Принцип Гюйгенса. Каждая точка среды, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн даёт положение волнового фронта в следующий момент времени.
Данный принцип усиливает подозрения в существовании сплошной непрерывной среды. 3. Электромагнитные волны распространяются в вакууме со скоростью, не зависящей от скорости источника или приёмника излучения и равной c.
4, Амплитуда колебаний всех электромагнитных волн одинакова, волны различаются лишь частотой (длинной волны), фазой, степенью поляризации и скоростью изменения этой поляризации..
Электромагни́тное излуче́ние (электромагнитные волны) — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля (то есть иначе говоря — взаимодействующих друг с другом электрического и магнитного полей).
Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.
К электромагнитному излучению относятся радиоволны (начиная со сверхдлинных), инфракрасное излучение, видимый свет, ультрафиолетовое, рентгеновское и жесткое (гамма-)излучение (см. ниже, см. также рисунок).
Электромагнитное излучение способно распространяться в вакууме (пространстве, свободном от вещества), но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом свое поведение).
Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию. Длина волны прямо связана с частотой через (групповую) скорость распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света[1]. В большинстве случаев (обычно) скорость — и групповая, и фазовая — распространения электромагнитного излучения в веществе отличается от таковых в вакууме очень незначительно (на доли процента) — см. Показатель преломления.
Описанием свойств и параметров электромагнитного излучения в целом занимается электродинамика, хотя свойствами излучения отдельных областей спектра занимаются определенные более специализированные разделы физики (отчасти так сложилось исторически, отчасти обусловлено существенной конкретной спецификой, особенно в отношении взаимодействия излучения разных диапазонов с веществом, отчасти также спецификой прикладных задач). К таким более специализированным разделам относятся оптика (и ее разделы) и радиофизика. Жестким электромагнитным излучением коротковолнового конца спектра занимается физика высоких энергий[2]; в соответствии с современными представлениями (Стандартная модель) при высоких энергиях электродинамика перестает быть самостоятельной, объединяясь в одной теории со слабыми взаимодействиями, а затем — при еще более высоких энергиях — как ожидается — со всеми остальными калибровочными полями.
Существуют различающиеся в деталях и степени общности теории, позволяющие смоделировать и исследовать свойства и проявления электромагнитного излучения. Наиболее фундаментальной[3] из завершенных и проверенных теорий такого рода является квантовая электродинамика, из которой путём тех или иных упрощений можно в принципе получить все перечисленные ниже теории, имеющие широкое применение в своих областях. Для описания относительно низкочастотного электромагнитного излучения в макроскопической области используют, как правило, классическую электродинамику, основанную на уравнениях Максвелла, причём существуют упрощения в прикладных применениях. Для оптического излучения (вплоть до рентгеновского диапазона) применяют оптику (в частности, волновую оптику, когда размеры некоторых частей оптической системы близки к длинам волн; квантовую оптику, когда существенны процессы поглощения, излучения и рассеяния фотонов; геометрическую оптику — предельный случай волновой оптики, когда длиной волны излучения можно пренебречь). Гамма-излучение чаще всего является предметом ядерной физики, с других — медицинских и биологических — позиций изучается воздействие электромагнитного излучения в радиологии. Существует также ряд областей — фундаментальных и прикладных — таких, как астрофизика, фотохимия, биология фотосинтеза и зрительного восприятия, ряд областей спектрального анализа, для которых электромагнитное излучение (чаще всего — определенного диапазона) и его взаимодействие с веществом играют ключевую роль. Все эти области граничат и даже пересекаются с описанными выше разделами физики.
Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:наличие трёх взаимно перпендикулярных (в вакууме) векторов: волнового вектора, вектора напряжённости электрического поля E и вектора напряжённости магнитного поля H.электромагнитные волны — это поперечные волны, в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том числе и через вакуум.