
- •Задача о математическом и физическом маятнике.
- •Собственные электромагнитные колебания в идеальном колебательном контуре.
- •Энергия гармонического осциллятора (механические колебания).
- •Энергия гармонического осциллятора (электромагнитные кллебания).
- •Альфа и бета распады. Радиоактивность.
- •Кинетический закон радиоактивного распада.
- •Основные свойства ядерных сил. Радиоактивность.
- •Физика ядра.Дефект массы. Энергия связи атомного ядра.
- •Примесная проводимость полупроводников. Проводники р-типа и n-типа.
- •Полупроводники. Собственная проводимость полупроводников.
- •Потенциалы возбуждения, ионизации
- •Опыт Штерла и Герлаха. Спин электрона. Спиновый магнитный момент электрона. Квантование спина.
- •Пространственное квантование орбитально-механического и орбитально-магнитного моментов. Магнитное квантовое число.
- •Квантование орбитального механического и орбитального магнитного моментов электрона. Орбитальное квантовое число.
- •Спектр атома водорода. Сериальная формула.
- •Квантово-механическая теория атома водорода. Квантование энергии. Главное квантовое число.
- •Уравнение Шредингера для стационарного состояния. Задача о свободном электроне.
- •Волновая функция. Её свойства и условие нормировки волновой функции.
- •Соотношение неопределенностей Гейзенберга
- •Модели строения атома. Идея де Бройля. Корпускулярно-волновой дуализм материи.
- •Внешний фотоэффект. Законы фотоэффектов. Квантовая теория внешнего фотоэффекта.
- •Тепловое излучение. Характеристики лучеиспускательной, поглощательной и отражательной способности тел. Закон Кирхгофа.
- •Квантовая оптика. Фотон и его характеристики.
- •Поляризация света. Закон Малюса. Закон Брюстера. Двойное лучепреломление. Явление Дихроизма. Поляризатор и анализатор.
- •1) Линейные (плоскополяризованный свет) :поляризационные призмы , поляроиды , стопы.2) циркулярные (эллиптически поляризованный свет)
- •Дифракция света. Дифракционная решетка. Дифракция рентгеновских лучей. Формула Вульфа-Брэгга.
- •Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция от одной щели.
- •Интерференция.
- •Интеференция света. Общее условие наблюдения интерференционных максимумов и минимумов. Опыт Югга.
- •Взаимодействие электромагнитных волн с веществом (поглощение, отражение, преломление)
- •Шкала электромагнитных волн. Излучение электромагнитных волн.
- •Вектор Пойнтинга.
- •Интерференция волн. Стоячие волны.
- •Волны. Продольные и поперечные волны. Уравнение плоской гармонической волны и его анализ. Скорость распространения волн. Волновое уравнение.
- •Вынужденные механические колебания. Дифференциальное уравнение и его решение. Резонанс.
- •Затухающие электромагнитные колебания. Дифференциальное уравнение. Характеристики затухания.
- •Затухающие механического колебания. Дифференциальное уравнение. Характеристики затухания.
- •Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- •Сложение гармонических колебаний со слегка отличающимися частотами.
- •Сложение гармонических колебаний одного направления
Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция от одной щели.
Принцип Гюйгенса — Френеля — основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности световых.
Принцип Гюйгенса — Френеля является развитием принципа, который ввёл Христиан Гюйгенс: каждая точка поверхности, достигнутая световой волной, является вторичным источником световых волн. Огибающая вторичных волн становится волновой поверхностью в следующий момент времени. Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракции. Огюстен Жан Френель дополнил принцип Гюйгенса, введя представления о когерентности и интерференции элементарных волн, что позволило рассматривать на основе принципа Гюйгенса — Френеля и дифракционные явления.Формулировка:
Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.
Дифра́кция Френе́ля — дифракционная картина, которая наблюдается на небольшом расстоянии от препятствия, по условиям, когда основной вклад в интерференционную картину дают границы экрана. Дифракционная картина для дифракции Френеля зависит от расстояния между экранами и от расположения источников света. Её можно рассчитать, считая, что каждая точка на границе апертуры излучает сферическую волну по принципу Гюйгенса. В точке наблюдения (занимаемое вторым экраном) волны или усиливают друг друга, или гасятся в зависимости от разности хода.
На рисунке справа схематично изображён непрозрачный экран с круглым отверстием (апертура), слева от которого расположен источник света. Изображение фиксируется в другом экране справа. Вследствие дифракции свет, проходящий через отверстие, расходится, поэтому область, которая была затенена по законам геометрической оптики, будет частично освещённой. В области, которая при прямолинейном распространении света была бы освещённой, наблюдаются колебания интенсивности освещения в виде концентрических колец.
Интерференция.
Интерференция— изменение в характере звуковых, тепловых, световых и электрических явлений, объясняемое колебательным движением: в первом случае частиц звучащего тела, в остальных трех — колебанием.
Интерференция света — частный случай интерференции для видимой области электромагнитного спектра;
Интерференция волн — нелинейное сложение интенсивностей двух или нескольких волн, сопровождающееся чередованием в пространстве максимумов и минимумов интенсивности. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.
Интерферировать могут все волны, однако устойчивая интерференционная картина будет наблюдаться только в том случае, если волны имеют одинаковую частоту и колебания в них не ортогональны. Интерференция может быть стационарной и нестационарной. Стационарную интерференционную картину могут давать только полностью когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну, фронтом которой будет сфера.
При интерференции волн не происходит сложения их энергий. Интерференция волн приводит к перераспределению энергии колебаний между различными близко расположенными частицами среды. Это не противоречит закону сохранения энергии потому, что в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.
При наложении некогерентных волн средняя величина квадрата амплитуды результирующей волны равна сумме квадратов амплитуд накладывающихся волн. Энергия результирующих колебаний каждой точки среды равна сумме энергий ее колебаний, обусловленных всеми некогерентными волнами в отдельности.
результата сложения двух сферических волн:
Две одновременно распространяющиеся синусоидальные сферические волны S1 и S2, созданные точечными источниками B1 и B2, вызовут в точке M колебание, которое, по принципу суперпозиции, описывается формулой S=S1+S2. Согласно формуле сферической волны:
,
Где
и
– фазы распространяющихся волн, k1
и k2
— волновые числа (
),
w1
и — циклические частоты каждой волны,a1
a2
- — начальные фазы,r1
r2
- — расстояния от точки М до точечных
источников B1 и B2
В результирующей
волне
,
мплитуда A/r
и фаза Ф определяются формулами: