Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
829338.doc
Скачиваний:
21
Добавлен:
24.11.2019
Размер:
804.35 Кб
Скачать

Соотношение неопределенностей Гейзенберга

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга) в квантовой механике — фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых, описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей задает нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом, является одним из краеугольных камней квантовой механики.

Соотношения неопределённостей Гейзенберга являются теоретическим пределом точности одновременных измерений двух некоммутирующих наблюдаемых. Они справедливы как для идеальных измерений, иногда называемых измерениями фон Неймана, так и для неидеальных измерений или измерений Ландау.

Соответственно, любая частица (в общем смысле, например несущая дискретный электрический заряд) не может быть описана одновременно как «классическая точечная частица» и как волна. (Сам факт того, что какое-либо из этих описаний может быть справедливо, по крайней мере в отдельных случаях, называют корпускулярно-волновым дуализмом). Принцип неопределённости в виде, первоначально предложенном Гейзенбергом, верен в случае, когда ни одно из этих двух описаний не является полностью и исключительно подходящим, например частица в коробке с определённым значением энергии; то есть для систем, которые не характеризуются ни каким-либо определённым «положением» (какое-либо определённое значение расстояния от потенциальной стенки), ни определённым значением импульса (включая его направление).Соотношения неопределённостей не ограничивают точность измерения величины, если ее оператор коммутирует сам с собой в разные моменты времени. Например, соотношение неопределённостей для свободной частицы не препятствуют точному измерению ее импульса, но не позволяет точно измерить ее координату (это ограничение называется стандартный квантовый предел для координаты).Существует точная, количественная аналогия между соотношениями неопределённости Гейзенберга и свойствами волн или сигналов. Рассмотрим переменный во времени сигнал, например звуковую волну. Бессмысленно говорить о частотном спектре сигнала в какой-либо момент времени. Для точного определения частоты необходимо наблюдать за сигналом в течение некоторого времени, таким образом теряя точность определения времени. Другими словами, звук не может иметь и точного значения времени, как например короткий импульс, и точного значения частоты, как, например, в непрерывном чистом тоне. Временно́е положение и частота волны во времени походят на координату и импульс частицы в пространстве. Если приготовлены несколько идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности — это фундаментальный постулат квантовой механики. Измеряя величину среднеквадратического отклонения Δx координаты и среднеквадратического отклонения Δp импульса, мы найдем что: , где — приведённая постоянная Планка.

Принцип неопределённости становится тогда теоремой в теории операторов Для любых самосопряжённых операторов: и , и любого элемента x из H такого, что ABx и BAx оба определены (то есть, в частности, Ax и Bx также определены), имеем:

Это прямое следствие неравенства Коши — Буняковского.

Отсюда Это неравенство называют соотношением Робертсона — Шрёдингера.

Оператор AB − BA называют коммутатором A и B и обозначают как [A,B]. Он определен для тех x, для которых определены оба ABx и BAx.

Предположим, A и B — две физические величины, которые связаны с самосопряжёнными операторами. Если ABψ и BAψ определены, тогда: , где — среднее значение оператора величины X в состоянии ψ системы, и — оператор стандартного отклонения величины X в состоянии ψ системы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]