Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
829338.doc
Скачиваний:
22
Добавлен:
24.11.2019
Размер:
804.35 Кб
Скачать

Уравнение Шредингера для стационарного состояния. Задача о свободном электроне.

Ква́нтовая меха́ника — раздел теоретической физики, описывающий квантовые системы и законы их движения. Квантовая механика способна с великолепной точностью описывать электроны, фотоны, а также другие элементарные частицы. Эксперименты подтверждают результаты, полученные с помощью квантовой механики. Основными понятиями квантовой кинематики являются понятия наблюдаемой и состояния.

Основные уравнения квантовой динамики — уравнение Шрёдингера, уравнение фон Неймана, уравнение Линдблада, уравнение Гейзенберга, и уравнение Паули

Уравне́ние Шрёдингера в квантовой физике — уравнение, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона в классической механике. Его можно назвать уравнением движения квантовой частицы.

В квантовой физике вводится комплекснозначная функция , описывающая чистое состояние объекта, которая называется волновой функцией. Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения в частных физических задачах. Таким уравнением является уравнение Шрёдингера. Пусть волновая функция задана в N-мерном пространстве, тогда в каждой точке с координатами , в определенный момент времени t она будет иметь вид . В таком случае уравнение Шрёдингера запишется в виде: , где , — постоянная Планка; m — масса частицы, — внешняя по отношению к частице потенциальная энергия в точке , — оператор Лапласа (или лапласиан), эквивалентен квадрату оператора набла и в n-мерной системе координат имеет вид:

.

Форма уравнения Шрёдингера показывает, что относительно времени его решение должно быть простым, поскольку время входит в это уравнение лишь через первую производную в правой части. Действительно, частное решение для специального случая, когда E_p не является функцией времени, можно записать в виде где функция должна удовлетворять уравнению: , которое получается из уравнения Шрёдингера (1) при подстановке в него указанной выше формулы для (2). Заметим, что это уравнение вообще не содержит времени; в связи с этим оно называется стационарным уравнением Шрёдингера (уравнение Шрёдингера, не содержащее времени).

Волновая функция. Её свойства и условие нормировки волновой функции.

Волнова́я фу́нкция (функция состояния, пси-функция) — комплекснозначная функция, используемая в квантовой механике для описания чистого состояния квантовомеханической системы. Является коэффициентом разложения вектора состояния по базису (обычно координатному): где - оординатный базисный вектор, а - волновая функция в координатном представлении. Квадрат модуля волновой функции -амплитуда вероятности: плотность вероятности нахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния.

В координатном представлении волновая функция зависит от координат (или обобщённых координат) системы. Физический смысл приписывается квадрату её модуля который интерпретируется как плотность вероятности w (для дискретных спектров — просто вероятность) обнаружить систему в положении, описываемом координатами x1=x01, x2=x02, …, x0n в момент времени t: . Тогда в заданном квантовом состоянии системы, описываемом волновой функцией , можно рассчитать вероятность P того, что частица будет обнаружена в любой области пространства конечного объема V: .Условия регулярности волновой функции:Условие конечности волновой функции. Волновая функция не может принимать бесконечных значений, таких, что интеграл станет расходящимся. Следовательно, это условие требует, чтобы волновая функция была квадратично интегрируемой функцией. В частности, в задачах с нормированной волновой функцией квадрат модуля волновой функции должен стремиться к нулю на бесконечности.

Условие однозначности волновой функции. Волновая функция должна быть однозначной функцией координат и времени, так как плотность вероятности обнаружения частицы должна определяться в каждой задаче однозначно. В задачах с использованием цилиндрической или сферической системы координат условие однозначности приводит к периодичности волновых функций по угловым переменным.Условие непрерывности волновой функции. В любой момент времени волновая функция должна быть непрерывной функцией пространственных координат. Кроме того, непрерывными должны быть также частные производные волновой функции , , . Эти частные производные функций лишь в редких случаях задач с идеализированными силовыми полями могут терпеть разрыв в тех точках пространства, где потенциальная энергия, описывающая силовое поле, в котором движется частица, испытывает разрыв второго рода.Волновая функция по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющее вид: .Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо во всём пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]