Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Нанотехнологии в магнитной записи информации..doc
Скачиваний:
11
Добавлен:
24.11.2019
Размер:
4.13 Mб
Скачать

Технология двухфотонной записи информации

Если стандартные DVD имеют на каж­дой стороне лишь по два слоя для записи информации, то развиваемая сейчас двухфотонная технология запи­си (Two-photon 3D optical data storage) позволяет использовать по нескольку сот слоев на каждой стороне диска (созданные прототипы имеют 100 слоев при толщине 8 мм).

В основу "Двухфотонного трёхмерного оптического устройства хранения данных" (Two-photon 3D optical data storage), его изобретатель К. Белфилд положил принцип двухфотонного возбуждения (рис. 19). Говоря упрощённо, это когда некая светочувствительная молекула откликается флуоресценцией, поглотив сразу два фотона меньшей энергии, так, как если бы она поглотила один фотон большей энергии. Используя сочетание двух лазеров с разными длинами волны, можно добиться того, что на диск будет спроецировано очень чёткое изображение, с разрешением куда более высоким, чем возможно получить при одном лазере. Внутри этого изображения будут свои тёмные и светлые участки — будущие биты. При этом настройкой лазеров можно добиться того, что по паре фотонов получат всего несколько молекул в толще прозрачного материала, расположенных точно в той точке, где мы хотим записать очередную двоичную единицу. При этом целеуказание можно менять не только в плоскости диска, но и по его глубине, причём разницу между соседними слоями записи можно сделать очень маленькой, а число слоёв — большим (в первых опытах К. Белфилда это были 1 микрон и 33 слоя, соответственно). Для того, чтобы сохранить эту информацию, авторы придумали бихромофорный состав из молекул одной из производных флуорена и представителя класса диарилэтенов, которые реагируют на облучение той или иной частоты изменением своей формы.

Последнее вещество имеет два устойчивых изомера, так называемые открытый и закрытый типы. Вот вам и двоичные "ноль" с "единицей" на молекулярном уровне. При записи флуорен воспринимает фотоны и, словно гонец, передаёт полученную энергию диарилэтену, чтобы тот записал "единичку". Но главное, что требовалось придумать, — не как записывать информацию лазерами, а как ими же и считывать данные, причём чтобы они не стирались. Оказалось, что это легко сделать при помощи флуоресценции данного состава в ответ на облучение с определённой частотой.

Опыты показали, что надёжность считывания записи с такого диска остаётся безупречной даже после 10 тысяч циклов чтения, хотя всё же контраст по яркости отклика между "единичками" и "нулями" немного снижается.

Тем не менее, индуцированные изменения при этом могут быть зафиксированы как изменения абсорбции, флуоресценции, отражательной способно­сти или электрических свойств материала в точке рас­положения бита. Такая технология позволит сохранять до 100 Гбайт информации на одном диске того же, что CD и DVD, размера. Одной из перспективных сред, которая может, например, абсорбировать или флуо­ресцировать при записи битов, является материал spirobenzopyran. Однако при комнатной температуре записанная в нем информация может храниться не бо­лее 20 часов. Неограниченно долго данный материал может сохранять информацию только при температуре -32°С, то есть при температуре сухого льда. Исследует­ся также возможность использования для двухфотонной записи фотохромного протеина bacteriorhodopsin и нитронафтиальдегида (rhodamine B).

Рис. 19. Упрощённая схема двухфотонной записи. Красным цветом показан лазер. Качающееся зеркало управляет изменением координат X и Y, а линза — фокусировкой лазерных лучей по глубине диска. Справа: запись происходит благодаря изменению состояния полимера при получении энергии от светочувствительного вещества. Внизу: благодаря настройке лазеров можно вести запись (а потом — чтение) в очень большом числе слоёв.

Однако чисто оптические методы записи, в кото­рых среда для записи (или ее часть) расположена на за­метном расстоянии от лазера, имеют одно важное огра­ничение — минимальный размер бита записываемой информации ограничен величиной /2. Это обуслов­лено дифракционными ограничениями. Даже при ис­пользовании голубого твердотельного лазера линей­ный размер одного бита информации может быть лишь около 215 нм. Таким образом чисто оптические методы позволят записывать в одном кубическом сантиметре не более 1014-1015 бит информации. При этом, для достижения в компьютерах плотнос­ти записи 1014 бит/см3 понадобится не менее 10 лет.