Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Анализ (лекции 1сем, 1 курс).docx
Скачиваний:
7
Добавлен:
23.11.2019
Размер:
2.43 Mб
Скачать

1. Первообразная и неопределенный интеграл

Ниже в качестве берется любой из промежутков: (концы и могут быть бесконечными).

Определение 1. Говорят, что функция является первообразной для функции на множестве если Разыскание всех первообразных функции называется интегрированием

Например, функция является первообразной для на всей оси так как

Теорема 1(об общем виде всех первообразных данной функции). Пусть фиксированная первообразная функции (на множестве ). Тогда множество всех первообразных функции (на множестве ) описывается формулой

где произвольная постоянная.

Доказательство вытекает из того, что если и две первообразные функции , то а, значит, разность является постоянной величиной на множестве , т.е.

Определение 2. Совокупность всех первообразных функции (на множестве ) называется неопределенным интегралом на этой функции. Обозначение: При этом сама функция называется подынтегральной функцией и если интеграл от нее существует, то говорят, что интегрируема на .

Из теоремы 1 вытекает, что где фиксированная первообразная функции (на множестве ), а произвольная постоянная. Отметим, что равенство равносильно равенству . Таким образом, для доказательства того, что некоторая функция является неопределенным интегралом от функции надо продифференцировать ее по если при этом будет получена подынтегральная функция , то равенство будет истинным. Используя этот факт, легко докажем следующие формулы.

Таблица неопределенных интегралов (ниже везде произвольная постоянная)

Докажем, например, формулу 10. Дифференцируем правую часть равенства 10 по :

Получена подынтегральная функция левой части 10. Значит, равенство 10 верно. Точно так же доказываются остальные формулы этой таблицы.

Свойства неопределенного интеграла (везде ниже предполагается, что интегралы от соответствующих функций существуют):

Свойство называют свойством линейности интеграла. Первые два свойства показывают, что операции дифференцирования и интегрирования взаимно обратны.

Немного позже будет установлено, что всякая непрерывная на промежутке функция интегрируема на этом промежутке.

2. Замена переменной в неопределенном интеграле

Перейдем к формулировке теоремы о замене переменной в неопределенном интеграле, которая часто используется при вычислении интегралов. Здесь имеются в виду два утверждения1:

где функция, обратная к функции

Теорема 2. а) Пусть выполнены условия: 1) функция непрерывна в своей области определения б) функция непрерывно дифференцируема на множестве таком, что

Тогда для всех имеет место равенство

б) Пусть выполнены условия: 1) функция непрерывна в своей области определения

2) функция непрерывно дифференцируема2 на множестве таком, что

3) 4) функция имеет на множестве обратную функцию Тогда для всех имеет место равенство

Замечание 1. Преобразования в часто называют процедурой введения множителя под знак дифференциала. Формулу удобно применять в тех случаях, когда функция легче интегрируется, чем исходная функция Например,

= Далее надо вернуться к старой переменной с помощью обратной функции и получить ответ: