
- •1.Введение
- •Глава 1. Общие сведения о комплексе систем наземного обеспечения
- •1.1. Комплексы ла
- •1.2. Летательный аппарат как объект обслуживания
- •1.3. Классификация систем наземного обеспечения и требования, предъявляемые к ним
- •Глава 2. Основы взаимодействия элементов систем наземного обеспечения на технической и стартовой позициях
- •2.1. Принципиальные схемы технологической подготовки ла к пуску
- •2.2. Назначение и структура технической позиции
- •2.3. Назначение и структура стартовой позиции
- •2.4. Организация процесса функционирования технологического оборудования в период предстартовой подготовки ла
- •2.4.1. Характеристика объекта подготовки
- •2.4.2. Организация работ на технической позиции
- •2.4.3. Организация работ на стартовой позиции
- •2.4.4. Функционирование наземного оборудования при полете рктс
- •Глава 3. Некоторые вопросы проектирования комплекса систем наземного обеспечения
- •3.1. Основные этапы организации проектирования
- •3.2. Последовательность системного проектирования и
- •3.3. Распределение ресурсов при создании и эксплуатации ксно
- •3.3.1. Технико-экономический анализ создания ксно
- •3.3.2. Определение временных характеристик технологического цикла подготовки ла
- •Глава 4. Математическое описание технологического процесса подготовки ла к пуску
- •4.1. Моделирование на эвм процесса подготовки ла с помощью представления технологического процесса абстрактными операциями
- •4.1.1. Задачи, решаемые при моделировании процесса подготовки ла
- •4.1.2. Абстрактные операции технологического процесса подготовки ла
- •4.1.3. Математическая модель операции обработки
- •4.1.4. Математическая модель операции сборки
- •4.1.5. Математическая модель операции управления
- •4.2. Аналитические модели процесса подготовки ла
- •4.2.1. Общая постановка задачи обслуживания
- •4.2.2. Математическая модель процесса функционирования ксно
- •4.2.3. Моделирование процесса функционирования цзс
- •4.2.4. Моделирование процесса функционирования системы заправки, осуществляемой подвижными агрегатами обслуживания
- •4.3. Анализ эффективности ксно
- •4.3.1. Определение степени готовности ксно к применению
- •4.3.2. Вероятность нормального функционирования элементов ксно
- •4.3.3. Оценка вероятности поражения обслуживающего персонала при аварийном подрыве ла
- •Глава 5. Определение проектных параметров комплекса систем наземного обеспечения
- •5.1. Выбор рационального принципа структурного построения ксно и построения генерального плана
- •5.2. Выбор проектных параметров отдельных элементов наземного обеспечения
- •5.2.1. Транспортно-установочный агрегат
- •5.2.2. Башня обслуживания
- •5.2.3. Монтажно-испытательный корпус
- •5.3. Выбор оптимальных сроков службы ксно и его элементов
- •5.3.1. Постановка обобщенной задачи замены ксно
- •5.3.2. Выбор оптимальных сроков службы элемента ксно для частного случая
- •5.3.3. Определение рационального срока службы элемента ксно
- •5.4. Выбор оптимальной надежности ксно и его элементов
- •5.4.1. Общая постановка задачи оптимизации надежности ксно
- •5.4.2. Определение оптимального режима тренировок элементов ксно
- •5.4.3. Определение оптимального времени замены элементов ксно
- •5.4.4. Выбор оптимального распределения надежности отдельных элементов ксно
- •5.4.5. Определение оптимального числа резервных элементов ксно
- •Глава 6. Анализ проблемы управления наземной космической инфраструктурой
- •1.1.Особенности российской космической деятельности
- •Количество пусков ркп, проведенных с космодромов России в интересах запусков коммерческих ка в 1995-2004 годах
- •6.2. Общая характеристика состояния наземной космической инфраструктуры
- •6.2.1. Определение космической инфраструктуры
- •6.2.2. Состав и состояние технической структуры космодромов
- •1.2.Прогноз запусков ка по научным, социально-экономическим и международным космическим программам
- •1.3.Направления совершенствования технической структуры нки
- •6.5. Концепция управления наземной космической инфраструктурой на основе мониторинга ее состояния
- •Эволюция объектов мониторинга в космической отрасли
- •Оглавление
- •1. Введение 3
- •Глава 1. Общие сведения о комплексе систем наземного обеспечения 4
- •Глава 2. Основы взаимодействия элементов систем наземного обеспечения на технической и стартовой позициях 20
- •Глава 3. Некоторые вопросы проектирования комплекса систем наземного обеспечения 54
- •Глава 4. Математическое описание технологического процесса подготовки ла к пуску 83
- •Глава 5. Определение проектных параметров комплекса систем наземного обеспечения 148
- •Глава 6. Анализ проблемы управления наземной космической инфраструктурой 185
4.1.2. Абстрактные операции технологического процесса подготовки ла
Построение математической модели процесса подготовки осуществляется путём расчленения технологического процесса проведения работ на некоторое количество элементарных актов, удобных с точки зрения подбора соответствующих математических схем и называемых технологическими операциями.
Для того чтобы располагать удобной системой понятий, используемых для формализации конкретных процессов подготовки ЛА, наряду с реальными технологическими операциями целесообразно рассматривать формализованные операции, под которыми понимаются наиболее существенные элементарные акты формализованной схемы.
Однако не всегда выгодно строить формализованные операции как математические образы конкретных операций подготовки ЛА, поскольку сложная технологическая операция реального процесса может быть описана при помощи совокупности нескольких формализованных операций. В силу отмеченной неоднозначности возникает проблема выбора оптимального варианта представления формализованной схемы процесса в виде совокупности операций.
Анализ функционирования комплекса систем наземного обслуживания показывает, что при построении математической модели процесса предстартовой подготовки ЛА можно ограничиться набором небольшого количества абстрактных операций, соответствующих крупным классам конкретных формализованных операций и играющих главную роль при моделировании изучаемого процесса. К этим абстрактным операциям относятся: обработка, сборка и управление.
Представление технологического процесса подготовки ЛА в виде совокупности последовательно выполняемых операций не является однозначным, поскольку под операцией можно понимать как акт, направленный на изменение значения одного параметра, так и объединение последовательных актов такого рода. В дальнейшем для упрощения математической модели процесса предстартовой подготовки абстрактные операции обработки, сборки и управления будем относить к определенному технологическому оборудованию.
Заметим, что выполнение той или иной технологической операции над ЛА или его элементом обязательно связано с изменением их свойств. Если свойства ЛА или его элемента описаны числовыми характеристиками или параметрами, то выполнение операции над ними связано с изменением значений параметров ЛА.
Из вышеизложенного следует, что при построении математического описания технологических операций необходимо выбрать систему параметров, описывающих состояния ЛА, его элементов и других объектов, участвующих в технологическом процессе подготовки ЛА. В этом случае каждая технологическая операция может рассматриваться как преобразователь (оператор), определяющий изменение значений параметров ЛА и его элементов. Тогда математическая модель технологического процесса подготовки ЛА как совокупность формализованных операций будет представлять собой последовательность операторов, перерабатывающих информацию о состояниях ЛА и его элементов в процессе их движения от завода-изготовителя до пуска.
Одним из наиболее существенных параметров любого подготавливаемого ЛА или его элемента является время начала данной технологической операции tij, т. е. время поступления j-го элемента ЛА к i-му агрегату технологического оборудования для выполнения i-й операции.
Последовательности моментов tj поступления j-го элемента ЛА к агрегату технологического оборудования могут быть либо детерминированными, либо случайными. В первом случае момент tij жестко определяется условиями синхронизации отдельных операций, а во втором случае наступление момента tj случайно.
Для детерминированных последовательностей tj определяется через другие известные величины, например tj-1, т. е.
,
где Δt— постоянная величина времени.
Для случайных последовательностей tj определяется либо с помощью случайных приращений δtj величин tj, имеющих заданные законы распределения, либо описанием последовательности tj как случайного потока однородных событий.
Помимо момента поступления tj на технологический агрегат, подготавливаемый ЛА или его элемент имеет характеристики двух видов: количественные (размеры, масса, координаты положения в пространстве и т. п.), описываемые непрерывными параметрами, и качественные (годен — не годен, прошел — не прошел обработку, проверен — не проверен и т. д.), описываемые дискретными параметрами типа “да”, “нет”.
Следует помнить, что непрерывные и дискретные параметры, характеризующие подготавливаемый ЛА, в общем случае могут быть случайными, и поэтому для их представления необходимо иметь соответствующие законы распределения.