Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_Matan.docx
Скачиваний:
21
Добавлен:
25.09.2019
Размер:
4.77 Mб
Скачать

41. Линейные однородные ду второго порядка с постоянными коэффициентами. Метод характеристического уравнения.

Эйлер предложил искать частные решения в виде . Если принять частным решением уравнения , то при подстановке этого решения в уравнение мы должны получить тождество. Так мы получили характеристическое уравнение. Решения k1 и k2 этого квадратного уравнения определяют частные решения и нашего ЛОДУ второго порядка с постоянными коэффициентами. В зависимости от коэффициентов p и q корни характеристического уравнения могут быть:

  1. действительными и различными ,

  1. действительными и совпадающими ,

  1. комплексно сопряженной парой .

В первом случае линейно независимыми частными решениями исходного дифференциального уравнения являются и , общее решение ЛОДУ второго порядка с постоянными коэффициентами есть . Функции и действительно линейно независимы, так как определитель Вронского отличен от нуля для любых действительных x при . Во втором случае одним частным решением является функция . В качестве второго частного решения берется . Покажем, что действительно является частным решением ЛОДУ второго порядка с постоянными коэффициентами и докажем линейную независимость y1 и y2. Так как k1 = k0 и k2 = k0 совпадающие корни характеристического уравнения, то оно имеет вид . Следовательно, - исходное линейное однородное дифференциальное уравнение. Подставим в него и убедимся, что уравнение обращается в тождество: Таким образом, является частным решением исходного уравнения. Покажем линейную независимость функций и . Для этого вычислим определитель Вронского и убедимся, что он отличен от нуля. Вывод: линейно независимыми частными решениями ЛОДУ второго порядка с постоянными коэффициентами являются и , и общее решение есть при . В третьем случае имеем пару комплексных частных решений ЛОДУ и . Общее решение запишется как . Эти частные решения могут быть заменены двумя действительными функциями и , соответствующими действительной и мнимой частям. Это хорошо видно, если преобразовать общее решение , воспользовавшись формулами из теории функции комплексного переменного : где С3 и С4 – произвольные постоянные.

42. Лнду второго порядка. Теорема о структуре общего решения.

Линейное неоднородное дифференциальное уравнение (ЛНДУ) второго порядка с постоянными коэффициентами имеет вид , где p и q – произвольные действительные числа, а функция f(x) – непрерывна на интервале интегрирования X. Сформулируем теорему, которая показывает в каком виде искать общее решение ЛНДУ. Общее решение на интервале X линейного неоднородного дифференциального уравнения с непрерывными на интервале интегрирования X коэффициентами и непрерывной функцией f(x) равно сумме общего решения соответствующего ЛОДУ и какого-нибудь частного решения исходного неоднородного уравнения. То есть, . Таким образом, общим решением линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами является сумма . Нахождение описано в статье линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами и нам осталось научиться определять . Существует несколько методов нахождения частного решения ЛНДУ второго порядка с постоянными коэффициентами. Методы выбираются в зависимости от вида функции f(x), стоящей с правой части уравнения. Перечислим их.

  1. Если f(x) является многочленом n-ой степени f(x) = Pn(x), то частное решение ЛНДУ ищется в виде , где Qn(x) – многочлен степени n, а r – количество корней характеристического уравнения, равных нулю. Так как - частное решение уравнения , то коэффициенты, определяющие многочлен Qn(x), находятся методом неопределенных коэффициентов из равенства . Перейти к решению примера...

  1. Если функция f(x) представлена произведением многочлена степени n и экспоненты , то частное решение ЛНДУ второго порядка ищется в виде , где Qn(x) – многочлен n-ой степени, r – число корней характеристического уравнения, равных . Коэффициенты многочлена Qn(x) определяются из равенства . Перейти к решению примера...

  1. Если функция f(x) имеет вид , где А1 и В1 – числа, то частное решение ЛНДУ представляется как , где А и В – неопределенные коэффициенты, r – число комплексно сопряженных пар корней характеристического уравнения равных . Коэффициенты многочлена А и В находятся из равенства . Перейти к решению примера...

  1. Если , то , где r – число комплексно сопряженных пар корней характеристического уравнения, равных , Pn(x), Qk(x), Lm(x) и Nm(x) - многочлены степени n, k, m и m соответственно, m = max(n, k). Коэффициенты многочленов Lm(x) и Nm(x) находятся из равенства . Перейти к решению примера...

  1. Для любого другого вида функции f(x) применяется следующий алгоритм действий. Находится общее решение соответствующего линейного однородного уравнения как y0 = C1 y1 + C2 y2, где y1 и y2 - линейно независимые частные решения ЛОДУ, а С1 и С2 – произвольные постоянные. Далее варьируются произвольные постоянные, то есть, в качестве общего решения исходного ЛНДУ принимается y = C1(x) y1 + C2(x) y2. Производные функций C1(x) и С2(x) определяются из системы уравнений , а сами функции C1(x) и C2(x) находятся при последующем интегрировании.

Терема о структуре общего решения линейного неоднородного дифференциального уравнения. Общее решение линейного неоднородного дифференциального уравнения с непрерывными на интервале (a, b) коэффициентами и правой частью

Ln(y) = ;

(20)

равно сумме общего решения соответствующего однородного уравнения

Ln(y) = ;

(21)

и частного решения неоднородного уравнения (20): yон(x) = yоо(x) + yчн(x) = (C1 y1(x) + C2 y2(x) + …+ Cn yn(x)) + yчн(x). Док-во. Мы должны доказать, что если известно частное решение yчн(x) неоднородного уравнения (20), то любое его другое частное решение может быть получено по формуле при некотором наборе постоянных C1, C2, …, Cn. Так как и yчн(x), и - решения неоднородного уравнения (20), то Ln(yчн(x)) = f(x) и , следовательно, по линейности оператора Ln(y), . Функция удовлетворяет однородному уравнению, поэтому содержится в формуле C1 y1(x) + C2 y2(x) + …+ Cn yn(x) при некотором наборе постоянных C1, C2, …, Cn: . Таким образом, , что и требовалось доказать. Из предыдущей теоремы следует, что для нахождения общего решения линейного неоднородного дифференциального уравнения необходимо знать его частное решение. Здесь мы сформулируем и докажем теорему, которая позволяет свести нахождение частного решения неоднородного уравнения с правой частью вида ( - постоянные) к, возможно, более простой задаче нахождению частных решений этого уравнения с правыми частями вида f(x) = f1(x), f(x)=f2(x):

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]